The two development ways of turbocharger technology to solve the problem of matching performance with diesel were presented. The ways of waste valve gate turbocharger and variable geometry turbocharger can solve the p...The two development ways of turbocharger technology to solve the problem of matching performance with diesel were presented. The ways of waste valve gate turbocharger and variable geometry turbocharger can solve the problem of engine’s low speed torque and achieve lower smoke level. Especially for variable geometry turbocharger, it covers all conditions of engine. It can not only improve the low engine’s speed torque and keep the power performance at high engine speed, but also cover wide engine speed performance that keeps lower fuel consumption and exhaust gas temperature in full load and part load matching. The results of theory analysis and experiment research showed that it’s the ideal solution to solve the matching problem of diesel engines.展开更多
An experimental study was performed to compare the effects of high-and low-pressure exhaust gas recirculation loops(HP and LP EGR loops)on thermal efficiency and emissions of a diesel engine.Tests were conducted on a ...An experimental study was performed to compare the effects of high-and low-pressure exhaust gas recirculation loops(HP and LP EGR loops)on thermal efficiency and emissions of a diesel engine.Tests were conducted on a 12-L six-cylinder turbocharged diesel engine under various operating conditions.We found that at a low speed of 1100 r/min,1 MPa BMEP,the LP EGR loop could achieve higher brake thermal efficiency and lower emissions than the HP EGR.This is because the lower enthalpy available at the turbine inlet of the HP EGR loop increased the fuel/oxygen equivalence ratio.For the HP EGR,the gross indicated thermal efficiency was reduced by 1%,but pumping losses were only reduced by 0.5%,compared to the LP EGR loop.At a higher speed of 1600 r/min,1 MPa BMEP,the HP EGR loop attained a higher brake thermal efficiency and lower emissions because of the relatively sufficient flow through the turbocharger.For the HP EGR loop,the gross indicated thermal efficiency was only reduced by 0.5%and pumping losses were reduced by 1.5%,compared to the LP EGR loop.Lower fuel consumption and a longer ignition delay made the distribution of fuel/oxygen equivalence ratio more homogeneous,leading to lower emissions.Our data also showed that at the high speed of 1600 r/min,0.55 MPa BMEP,the brake thermal efficiency of the HP EGR loop first increased,then decreased as the EGR rate increased.Therefore,under all conditions,a reasonable match of both EGR loops could achieve a good balance between fuel consumption and emissions of NOx and soot.展开更多
文摘The two development ways of turbocharger technology to solve the problem of matching performance with diesel were presented. The ways of waste valve gate turbocharger and variable geometry turbocharger can solve the problem of engine’s low speed torque and achieve lower smoke level. Especially for variable geometry turbocharger, it covers all conditions of engine. It can not only improve the low engine’s speed torque and keep the power performance at high engine speed, but also cover wide engine speed performance that keeps lower fuel consumption and exhaust gas temperature in full load and part load matching. The results of theory analysis and experiment research showed that it’s the ideal solution to solve the matching problem of diesel engines.
基金supported by the National High Technology Research and Development Program of China("863" Program)(Grant No.2012AA111714)
文摘An experimental study was performed to compare the effects of high-and low-pressure exhaust gas recirculation loops(HP and LP EGR loops)on thermal efficiency and emissions of a diesel engine.Tests were conducted on a 12-L six-cylinder turbocharged diesel engine under various operating conditions.We found that at a low speed of 1100 r/min,1 MPa BMEP,the LP EGR loop could achieve higher brake thermal efficiency and lower emissions than the HP EGR.This is because the lower enthalpy available at the turbine inlet of the HP EGR loop increased the fuel/oxygen equivalence ratio.For the HP EGR,the gross indicated thermal efficiency was reduced by 1%,but pumping losses were only reduced by 0.5%,compared to the LP EGR loop.At a higher speed of 1600 r/min,1 MPa BMEP,the HP EGR loop attained a higher brake thermal efficiency and lower emissions because of the relatively sufficient flow through the turbocharger.For the HP EGR loop,the gross indicated thermal efficiency was only reduced by 0.5%and pumping losses were reduced by 1.5%,compared to the LP EGR loop.Lower fuel consumption and a longer ignition delay made the distribution of fuel/oxygen equivalence ratio more homogeneous,leading to lower emissions.Our data also showed that at the high speed of 1600 r/min,0.55 MPa BMEP,the brake thermal efficiency of the HP EGR loop first increased,then decreased as the EGR rate increased.Therefore,under all conditions,a reasonable match of both EGR loops could achieve a good balance between fuel consumption and emissions of NOx and soot.