Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate...Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising.展开更多
The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositio...The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.展开更多
文摘Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising.
基金the financial support from the National Natual Science Foundation of China(No.51375491)the Natural Science Foundation of Chongqing(Project No.2011JJA90020)the Science Foundation for Young Teachers of Logistical Engineering University
文摘The oxidation behavior of three biodiesels of different origins,viz.rapeseed oil derived biodiesel,soybean oil derived biodiesel and waste oil based biodiesel,were tested on an oxidation tester.The chemical compositions of the biodiesels were characterized by gas chromatography.Thereafter,the structural transformation of fatty acid methyl ester(FAME)of the biodiesels was analyzed by an infrared spectrometer and an ultraviolet absorption spectrometer.The results demonstrated that the oxidation behavior of biodiesels of different origins was closely related to the composition and distribution of FAMEs.Higher concentration of unsaturated FAME with multi-double bonds exhibited poorer oxidation resistance.Furthermore,cis-trans isomerization transformation occurred in the unsaturated FAME molecules and conjugated double-bond produced during the oxidation process of biodiesel.Greater cis-trans variations corresponded to deeper oxidation degree.The higher the content of unsaturated FAME with multi-double bonds in a biodiesel,the more the conjugated double bonds was formed.