本文论述了用于极高可靠性供电要求的场合如芯片工厂的配电架构改良,单独内燃机驱动的柴油发电机组(下文简称柴发)作为后备电源进行供电保障优化为结合储能以及不间断电源(Uninterrupted Power Supply,下文简称UPS)相组合的供电保障,UP...本文论述了用于极高可靠性供电要求的场合如芯片工厂的配电架构改良,单独内燃机驱动的柴油发电机组(下文简称柴发)作为后备电源进行供电保障优化为结合储能以及不间断电源(Uninterrupted Power Supply,下文简称UPS)相组合的供电保障,UPS的接线拓扑分析以及采用预充磁装置对优化的拓扑进行进一步改良。展开更多
Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mec...Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.展开更多
文摘本文论述了用于极高可靠性供电要求的场合如芯片工厂的配电架构改良,单独内燃机驱动的柴油发电机组(下文简称柴发)作为后备电源进行供电保障优化为结合储能以及不间断电源(Uninterrupted Power Supply,下文简称UPS)相组合的供电保障,UPS的接线拓扑分析以及采用预充磁装置对优化的拓扑进行进一步改良。
文摘Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed diesel-mechanical drive ships are in service, and more are being built. Another attractive alternative is combined gas and steam turbine (COGAS) drive. This approach offers significant advantages over steam and diesel propulsion. This paper presents the case for the COGAS cycle.