To obtain a triode structure canbon nanotube field emission display (CNT-FED), the glass plate which contains a glass channels matrix is designed and used as the triode part of the CNT-FED. Normally, the gate electr...To obtain a triode structure canbon nanotube field emission display (CNT-FED), the glass plate which contains a glass channels matrix is designed and used as the triode part of the CNT-FED. Normally, the gate electrode can be fabricated with screen printing methods and a channels matrix can be fabricated by two- faced chemical corrosion. By adjusting the etch time and the concentration of acid in the process, different shapes of the tunnels can be obtained. The size and morphology of channels are observed by a scanning electron microscope (SEM), and the ingredients of the corrosion solution are detected by infrared ray (IR) analysis. Voltage is added to the triode structure for obtaining the brightness image of the spot on the screen. Eventually, the electron trace pulling from cathode to anode under an electric field is obtained by simulation. It is concluded that the simulation results accord with the experimental results which realize the optimized triode structure.展开更多
Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed wit...Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed with conventional single-poly pMOS transistors, based on the bi-directional Fowler-Nordheim tunneling effect, and the typical program/erase time is 10ms for every 16bits. A new ,single-ended sense amplifier is proposed to reduce the power dissipation in the current sensing scheme. The average current consumption of the whole memory chip is 0.8μA for the power supply voltage of 1.2V at a reading rate of 640kHz.展开更多
Automatically assessing fabric smoothness grade is very important in the evaluation of fabric appearance.A system for objectively evaluating the fabric smoothness grade based on a grating projection unit and double co...Automatically assessing fabric smoothness grade is very important in the evaluation of fabric appearance.A system for objectively evaluating the fabric smoothness grade based on a grating projection unit and double colored CCD(short form of charge coupled device) was constructed in this paper.Two images captured by different CCD compensated each other which reduced the influence of noises.The application of the four-step phase-shifting method enabled the calculation of the exact phase in a point easy and quick.A large amount of 3D points with three coordinates X,Y and Z were obtained precisely making the definition and calculation of fabric smoothness characters easy.Then four parameters which intuitively denoted the fabric smoothness degree were obtained.Finally,a proper neural network was built,which successfully performed the fabric smoothness classification.The experimental results show that the system is applicable for all the fabric whatever pattern or color.The experimental grades provided by this grating projection system are also highly consistent with the subjective results.展开更多
The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti...The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.展开更多
A plasma spectroscopy experiment is described and its performances are given, ways oI excltauon u^ttc~,t tc~,,,,,~ ,,, free-burning plasma at atmospheric pressure is analyzed in detail. The fixed-grating spectrograph ...A plasma spectroscopy experiment is described and its performances are given, ways oI excltauon u^ttc~,t tc~,,,,,~ ,,, free-burning plasma at atmospheric pressure is analyzed in detail. The fixed-grating spectrograph PGS-2 Carl Zeiss Jena is actually a variation on the very first spectrometer design, where photo-plate was replaced with a detector array of PIXIS-Roper Scientific camera. Abilities of the system are analyzed and its limitations are determined.展开更多
The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response t...The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response to longitudinal US wave is investigated. The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength. The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal. Further research using two FBGs for realizing linear location is also achieved. The maximum linear location error is obtained as less than 5 mm. FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.展开更多
This paper aims to investigate thermal radiative characteristics of thermochrornic material La0.825Sr0.175MnO3(LSMO) with one-dimensional grating structured surfaces. The dielectric function of LSMO was calculated b...This paper aims to investigate thermal radiative characteristics of thermochrornic material La0.825Sr0.175MnO3(LSMO) with one-dimensional grating structured surfaces. The dielectric function of LSMO was calculated by K-K approach. Numerical calculation was conducted to obtain spectral emittance distribution of such surfaces with different structural parameters using the finite difference time domain (FDTD) method. It was found that the spectral emittance of LSMO structured surface exhib- ited the feature of selective enhancement due to the excitation of microcavity effect. The effects of structural parameters on spectral emittance indicated that the desired radiative enhancement could be achieved by the rational design of the structural parameters of grating. The temperature dependence of averaged emittance of LSMO was also calculated, The results showed that LSMO with grating structured surface had a better thermochromic performance compared with LSMO with smooth surface.展开更多
An acoustic emission (AE) linear location system was proposed, which employed fiber Bragg gratings (FBGs) as AE sensors. It was demonstrated that the FBG wavelength could be modulated as the static case when the g...An acoustic emission (AE) linear location system was proposed, which employed fiber Bragg gratings (FBGs) as AE sensors. It was demonstrated that the FBG wavelength could be modulated as the static case when the grating length was much shorter than the AE wavelength. In addition, an improved AE location method based on the Gabor wavelet transform (WT) and threshold analysis was represented. The method was testified through AE linear location experiments based on a tunable narrow-band laser interrogation system using ultra-short FBG sensors as AE sensors. Results of the experiments showed that 86% of the linear location errors were less than 10mm.展开更多
Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipmen...Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating(FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform(PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm(GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.展开更多
基金The National Basic Research Program of China(973Program) (No2003CB314702,2003CB314706)the PhDPro-grams Foundation of Ministry of Education of China ( No20030286003)the Program for New Century Excellent Talents in Uni-versity (NoNCET-04-0473)
文摘To obtain a triode structure canbon nanotube field emission display (CNT-FED), the glass plate which contains a glass channels matrix is designed and used as the triode part of the CNT-FED. Normally, the gate electrode can be fabricated with screen printing methods and a channels matrix can be fabricated by two- faced chemical corrosion. By adjusting the etch time and the concentration of acid in the process, different shapes of the tunnels can be obtained. The size and morphology of channels are observed by a scanning electron microscope (SEM), and the ingredients of the corrosion solution are detected by infrared ray (IR) analysis. Voltage is added to the triode structure for obtaining the brightness image of the spot on the screen. Eventually, the electron trace pulling from cathode to anode under an electric field is obtained by simulation. It is concluded that the simulation results accord with the experimental results which realize the optimized triode structure.
文摘Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed with conventional single-poly pMOS transistors, based on the bi-directional Fowler-Nordheim tunneling effect, and the typical program/erase time is 10ms for every 16bits. A new ,single-ended sense amplifier is proposed to reduce the power dissipation in the current sensing scheme. The average current consumption of the whole memory chip is 0.8μA for the power supply voltage of 1.2V at a reading rate of 640kHz.
文摘Automatically assessing fabric smoothness grade is very important in the evaluation of fabric appearance.A system for objectively evaluating the fabric smoothness grade based on a grating projection unit and double colored CCD(short form of charge coupled device) was constructed in this paper.Two images captured by different CCD compensated each other which reduced the influence of noises.The application of the four-step phase-shifting method enabled the calculation of the exact phase in a point easy and quick.A large amount of 3D points with three coordinates X,Y and Z were obtained precisely making the definition and calculation of fabric smoothness characters easy.Then four parameters which intuitively denoted the fabric smoothness degree were obtained.Finally,a proper neural network was built,which successfully performed the fabric smoothness classification.The experimental results show that the system is applicable for all the fabric whatever pattern or color.The experimental grades provided by this grating projection system are also highly consistent with the subjective results.
基金Projects(2010-0001-226, 2010-0008-277) supported by NCRC(National Core Research Center) Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology
文摘The optical embedded diffraction gratings with the internal refractive index modification in BK-7 glass plates were demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti: sapphire laser (λp=790 rim). The refractive index modifications with diameters ranging from 400 nm to 4 gm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 ×10^13 W/cm2. The graded refractive index profile was fabricated to be a symmetric around the center of the point at which low-density plasma occurred. The maximum refractive index change (An) was estimated to be 1.5x10 2. Several optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.
文摘A plasma spectroscopy experiment is described and its performances are given, ways oI excltauon u^ttc~,t tc~,,,,,~ ,,, free-burning plasma at atmospheric pressure is analyzed in detail. The fixed-grating spectrograph PGS-2 Carl Zeiss Jena is actually a variation on the very first spectrometer design, where photo-plate was replaced with a detector array of PIXIS-Roper Scientific camera. Abilities of the system are analyzed and its limitations are determined.
基金supported by the National Natural Science Foundation of China (No. 61074163)the Natural Science Foundation of Shandong Province (No.ZR2011FQ025)the Independent Innovation Fund of Shandong University (No.2010GN066)
文摘The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response to longitudinal US wave is investigated. The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength. The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal. Further research using two FBGs for realizing linear location is also achieved. The maximum linear location error is obtained as less than 5 mm. FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.
基金supported by the National Natural Science Foundation of China (Grant No.50936002,50876044)
文摘This paper aims to investigate thermal radiative characteristics of thermochrornic material La0.825Sr0.175MnO3(LSMO) with one-dimensional grating structured surfaces. The dielectric function of LSMO was calculated by K-K approach. Numerical calculation was conducted to obtain spectral emittance distribution of such surfaces with different structural parameters using the finite difference time domain (FDTD) method. It was found that the spectral emittance of LSMO structured surface exhib- ited the feature of selective enhancement due to the excitation of microcavity effect. The effects of structural parameters on spectral emittance indicated that the desired radiative enhancement could be achieved by the rational design of the structural parameters of grating. The temperature dependence of averaged emittance of LSMO was also calculated, The results showed that LSMO with grating structured surface had a better thermochromic performance compared with LSMO with smooth surface.
基金The authors gratefully acknowledge the financial support for this work from the Natural Science Foundation of China (Grant No. 61074163) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FQ025).
文摘An acoustic emission (AE) linear location system was proposed, which employed fiber Bragg gratings (FBGs) as AE sensors. It was demonstrated that the FBG wavelength could be modulated as the static case when the grating length was much shorter than the AE wavelength. In addition, an improved AE location method based on the Gabor wavelet transform (WT) and threshold analysis was represented. The method was testified through AE linear location experiments based on a tunable narrow-band laser interrogation system using ultra-short FBG sensors as AE sensors. Results of the experiments showed that 86% of the linear location errors were less than 10mm.
基金supported by the National Natural Science Foundation of China(No.41472260)the Fundamental Research Funds of Shandong University(No.2016JC012)the Young Scholars Program of Shandong University(No.2016WLJH30)
文摘Using the acoustic emission locating technology to monitor the health of the structure is important for ensuring the continuous and healthy operation of the complex engineering structures and large mechanical equipment. In this paper, four fiber Bragg grating(FBG) sensors are used to establish the sensor array to locate the acoustic emission source. Firstly, the nonlinear locating equations are established based on the principle of acoustic emission, and the solution of these equations is transformed into an optimization problem. Secondly, time difference extraction algorithm based on the phase transform(PHAT) weighted generalized cross correlation provides the necessary conditions for the accurate localization. Finally, the genetic algorithm(GA) is used to solve the optimization model. In this paper, twenty points are tested in the marble plate surface, and the results show that the absolute locating error is within the range of 10 mm, which proves the accuracy of this locating method.