Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors(OFETs)that are crucial for emerging displays,sensors,and label technologies.Among diverse material...Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors(OFETs)that are crucial for emerging displays,sensors,and label technologies.Among diverse materials,polymer gate dielectrics and two-dimensional(2D)organic crystals have intrinsic flexibility and natural compatibility with each other for OFETs with high performance;however,their combination lacks non-impurity and non-damage construction strategies.In this study,we developed a desirable OFET system using damage-free transfer of 2D organic single crystal,dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene on a unique polymer dielectric layer,poly(amic acid)(PAA).Benefiting from the unique PAA surface nanostructure and the long-range ordered characteristics of the 2D organic single crystal,the resulting OFETs show remarkable performance with high mobility and low operating voltage of 18.7 cm^(2) V^(−1) s^(−1) and−3 V,respectively.The result indicates that combining polymer gate dielectric with 2D organic single crystal using a high-quality method can produce flexible electronic devices with high performance.展开更多
In this paper,the pentacene-based organic field-effect transistors(OFETs)with poly(methyl methacrylate)(PMMA)as gate dielectrics were fabricated,and the effects of gate dielectric thickness and semiconductor thickness...In this paper,the pentacene-based organic field-effect transistors(OFETs)with poly(methyl methacrylate)(PMMA)as gate dielectrics were fabricated,and the effects of gate dielectric thickness and semiconductor thickness on the device performance were investigated.The optimal PMMA thickness is in the range of 350–400 nm to sustain a considerable current density and stable performance.The device performance depends on the thicknesses of the active layer non-monotonically,which can be explained by the morphology of the pentacene film and the position of the conducting channel in the active layer.The device with a pentacene thickness of 50 nm shows the best performance,which has a maximum hole mobility of 1.12 cm2/V·s.In addition,the introduction of a thin layer of tris-(8-hydroxyquinolinato)aluminum(Alq3)to the OFETs as a light-emitting material greatly decreases the device performance.展开更多
Using photonic crystals (PCs), the extraction efficiency of the light-emitting diodes (LEDs) can be greatly enhanced by the effects of photonic band gap (PBG) and grating diffraction. The two theoretical methods are a...Using photonic crystals (PCs), the extraction efficiency of the light-emitting diodes (LEDs) can be greatly enhanced by the effects of photonic band gap (PBG) and grating diffraction. The two theoretical methods are also discussed. Meanwhile, we demonstrate that LEDs can achieve high extraction efficiency by employing photonic crystal as diffraction grating. PCs with square lattice of cylindrical unit cells are fabricated in GaN layer of GaN-based blue LED. We present a theoretical discussion on the extraction efficiency of PC-LED, which relies on the effective medium theory and transmission matrix method to investigate the effect of lattice constant. The results show that the extraction efficiency of the high performance LEDs can achieve 61.8% when the lattice constant is 270 nm.展开更多
基金financially supported by the National Key R&D Program(2021YFA0717900)the National Natural Science Foundation of China(91833306,51725304,51903186,and 62004138)Beijing National Laboratory for Molecular Sciences(BNLMS202006)。
文摘Evolving flexible electronics requires the development of high-mobility and low-power organic field-effect transistors(OFETs)that are crucial for emerging displays,sensors,and label technologies.Among diverse materials,polymer gate dielectrics and two-dimensional(2D)organic crystals have intrinsic flexibility and natural compatibility with each other for OFETs with high performance;however,their combination lacks non-impurity and non-damage construction strategies.In this study,we developed a desirable OFET system using damage-free transfer of 2D organic single crystal,dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene on a unique polymer dielectric layer,poly(amic acid)(PAA).Benefiting from the unique PAA surface nanostructure and the long-range ordered characteristics of the 2D organic single crystal,the resulting OFETs show remarkable performance with high mobility and low operating voltage of 18.7 cm^(2) V^(−1) s^(−1) and−3 V,respectively.The result indicates that combining polymer gate dielectric with 2D organic single crystal using a high-quality method can produce flexible electronic devices with high performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177017,61275175,61036007,61377028,and 61077022)National Science Foundation for Distinguished Young Scholars of China(Grant No.61125505)the"111" Project of China(Grant No.B08002)
文摘In this paper,the pentacene-based organic field-effect transistors(OFETs)with poly(methyl methacrylate)(PMMA)as gate dielectrics were fabricated,and the effects of gate dielectric thickness and semiconductor thickness on the device performance were investigated.The optimal PMMA thickness is in the range of 350–400 nm to sustain a considerable current density and stable performance.The device performance depends on the thicknesses of the active layer non-monotonically,which can be explained by the morphology of the pentacene film and the position of the conducting channel in the active layer.The device with a pentacene thickness of 50 nm shows the best performance,which has a maximum hole mobility of 1.12 cm2/V·s.In addition,the introduction of a thin layer of tris-(8-hydroxyquinolinato)aluminum(Alq3)to the OFETs as a light-emitting material greatly decreases the device performance.
基金supported by the National Natural Science Foundation of China (No.60877047)the Natural Science Foundation of Hebei Province (No.2010002002)
文摘Using photonic crystals (PCs), the extraction efficiency of the light-emitting diodes (LEDs) can be greatly enhanced by the effects of photonic band gap (PBG) and grating diffraction. The two theoretical methods are also discussed. Meanwhile, we demonstrate that LEDs can achieve high extraction efficiency by employing photonic crystal as diffraction grating. PCs with square lattice of cylindrical unit cells are fabricated in GaN layer of GaN-based blue LED. We present a theoretical discussion on the extraction efficiency of PC-LED, which relies on the effective medium theory and transmission matrix method to investigate the effect of lattice constant. The results show that the extraction efficiency of the high performance LEDs can achieve 61.8% when the lattice constant is 270 nm.