期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于融合多策略对比学习的中文医疗术语标准化研究
1
作者 岳崇浩 张剑 +4 位作者 吴义熔 李小龙 华晟 童顺航 孙水发 《数据分析与知识发现》 EI CSSCI CSCD 北大核心 2024年第6期144-157,共14页
【目的】应对中文医疗术语标准化存在的短文本、相似性高、单蕴含与多蕴含等挑战,研究基于融合多策略对比学习的召回-排序-数量预测研究框架。【方法】首先,融合文本统计特征和深度语义特征进行候选召回,依据相似度分数获取候选实体集;... 【目的】应对中文医疗术语标准化存在的短文本、相似性高、单蕴含与多蕴含等挑战,研究基于融合多策略对比学习的召回-排序-数量预测研究框架。【方法】首先,融合文本统计特征和深度语义特征进行候选召回,依据相似度分数获取候选实体集;其次,候选排序将原始术语、标准实体、来自候选召回的候选实体结合预训练模型与对比学习策略训练向量表示,依据余弦相似度重新排序;再次,数量预测通过多头注意力更新原始词的向量表示,预测原始术语中蕴含标准实体的数量;最后,融合候选召回和候选排序的相似度分数,基于数量预测结果按照顺序选取对应标准实体。【结果】在中文医疗术语标准化数据集Yidu-N7k上进行性能评估,与统计模型、主流深度学习模型进行比较,融合多策略对比学习的标准化框架的准确率达到92.17%,对比基于预训练的二分类基线模型最多提高0.94个百分点。同时,在自制的150例女性乳腺癌钼靶检查报告数据集上,融合多策略对比学习的标准化框架的准确率达到97.85%,性能最优。【局限】实验只在医疗数据集上展开,在其他领域的有效性需进一步研究。【结论】多策略的候选召回可以全面地考虑文本信息能够应对短文本挑战;对比学习的候选排序能够捕捉文本细微差距能够应对相似性高挑战;多头注意力的数量预测能够增强向量表示能够应对单蕴含与多蕴含挑战。融合多策略对比学习的中文医疗术语标准化方法为促进医学信息挖掘和临床研究提供了潜力。 展开更多
关键词 医疗术语标准化 多策略候选召回 对比学习 乳腺癌钼靶 检查报告
原文传递
智慧医疗背景下智慧病历系统的研究与应用 被引量:4
2
作者 车滢霞 严丽霞 +3 位作者 秦锡虎 陈强 张锋 郑晓渊 《中国医疗设备》 2022年第12期105-108,共4页
目的为解决传统电子病历数据利用率低、病历质控滞后等问题,设计一种智慧病历系统。方法基于数据元模型构建标准化医疗术语,并通过调用标准化医疗术语,实现电子病历的全结构化录入及存储,并基于规则引擎的质控系统对病历进行全流程质控... 目的为解决传统电子病历数据利用率低、病历质控滞后等问题,设计一种智慧病历系统。方法基于数据元模型构建标准化医疗术语,并通过调用标准化医疗术语,实现电子病历的全结构化录入及存储,并基于规则引擎的质控系统对病历进行全流程质控,构建智能评估体系对病历及诊疗数据进行自动评估,同时支持任意维度对病历进行检索及导出。结果知识库已累计产生20万余条标准化医疗术语,7.6亿余条医疗数据,具有医学意义的医疗数据占比84%。病案首页自动生成率由19.97%提升至77.99%,甲级病历率由96.21%提高至99.01%,疾病诊断相关组结算率由90.08%提升至97.99%,在新冠疫情防控过程中做到了不漏诊、院内零感染。结论智慧病历系统有效提高了病历数据利用率、病历质量及医疗质量。 展开更多
关键词 智慧医疗 智慧病历系统 标准化医疗术语 全流程质控 智能评估
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部