TN25 99053164基于不同的非线性前色散补偿技术的比较=Comparisonof different compensations oi standard singlemode fiber following dispersion comnpensationfibers[刊,中]/余建军,管克俭(北京邮电大学电信工程学院.北京(100088))...TN25 99053164基于不同的非线性前色散补偿技术的比较=Comparisonof different compensations oi standard singlemode fiber following dispersion comnpensationfibers[刊,中]/余建军,管克俭(北京邮电大学电信工程学院.北京(100088)),杨伯君(北京邮电大学基础科学部.北京(100088))//光通信技术.—1998,22(3).—238—242对非线性前色散补偿系统中的完全补偿、过补偿和欠补偿进行了数值模拟。数值结论表明:采用非线性前补偿不论是完全补偿、过补偿还是欠补偿,当入纤平均功率为1 mW到15 mW时20 Gbit/s、最大半宽度为20ps的RZ脉冲经过100展开更多
We propose a 10-Gb/s Wavelength- Division-Multiplexed Passive Optical Network (WDM-PON) scheme with upstream transmi- ssion employing Reflective Semiconductor Op- tical Amplifier (RSOA) and Fibre Bragg Gra- ting ...We propose a 10-Gb/s Wavelength- Division-Multiplexed Passive Optical Network (WDM-PON) scheme with upstream transmi- ssion employing Reflective Semiconductor Op- tical Amplifier (RSOA) and Fibre Bragg Gra- ting (FBG) optical equaliser. Transmissions of 10-Gb/s non return-to-zero signals using a 1.2- GHz RSOA and FBG optical equaliser with different setups are demonstrated. Significant performance improvement and 40-kin standard single mode fibre transmission are achieved using FBG optical equaliser and Remotely Pum- ped Erbium-Doped Fibre Amplifier (RP-EDFA), where they are used to equalise the output of the band-limited RSOA and amplify the seed light and upstream signal, respectively.展开更多
The authors' developed combined system model can be considered under the concept of next generation optical network (NGON) as a model for the future design of backbone networks. Such solution can be topical in the ...The authors' developed combined system model can be considered under the concept of next generation optical network (NGON) as a model for the future design of backbone networks. Such solution can be topical in the result of different telecom operators' optical networks convergence. In this case a necessity to transmit differently modulated signals over a single optical fiber even with different bit rates may occur. This research is performed with OptSim 5.2 simulation software that numerically solves nonlinear SchrOdinger equation. The authors have revealed the optimal parameter configuration for developed combined transmission systems and obtained in system's channels detected signals bit-error-rate (BER) correlation diagrams. They represent BER as a function from different system's parameters such as channel output power level, optical amplifier fixed output power level and system's channels allotment in C-band of ITU-T (Telecommunication Standardization Sector of the International Telecommunications Union) recommended spectral grid. As well as these obtained BER values were compared with the results for similar system, where instead of standard single mode fiber (according ITU-T Rec. G.652 D) optical signals are transmitted over non-zero dispersion shifted fiber (ITU-T Rec. G. 655).展开更多
文摘TN25 99053164基于不同的非线性前色散补偿技术的比较=Comparisonof different compensations oi standard singlemode fiber following dispersion comnpensationfibers[刊,中]/余建军,管克俭(北京邮电大学电信工程学院.北京(100088)),杨伯君(北京邮电大学基础科学部.北京(100088))//光通信技术.—1998,22(3).—238—242对非线性前色散补偿系统中的完全补偿、过补偿和欠补偿进行了数值模拟。数值结论表明:采用非线性前补偿不论是完全补偿、过补偿还是欠补偿,当入纤平均功率为1 mW到15 mW时20 Gbit/s、最大半宽度为20ps的RZ脉冲经过100
基金ACKNOWLEDGEMENT This work was supported by the National High Technology Research and Development Pro- gram of China under Grant No. 2011AA01A- 104 the National Natural Science Foundation of China under Grant No. 61302079 and the Fund of State Key Laboratory of Information Photonics and Optical Communications, Bei- jing University of Posts and Telecommunica- tions, China.
文摘We propose a 10-Gb/s Wavelength- Division-Multiplexed Passive Optical Network (WDM-PON) scheme with upstream transmi- ssion employing Reflective Semiconductor Op- tical Amplifier (RSOA) and Fibre Bragg Gra- ting (FBG) optical equaliser. Transmissions of 10-Gb/s non return-to-zero signals using a 1.2- GHz RSOA and FBG optical equaliser with different setups are demonstrated. Significant performance improvement and 40-kin standard single mode fibre transmission are achieved using FBG optical equaliser and Remotely Pum- ped Erbium-Doped Fibre Amplifier (RP-EDFA), where they are used to equalise the output of the band-limited RSOA and amplify the seed light and upstream signal, respectively.
文摘The authors' developed combined system model can be considered under the concept of next generation optical network (NGON) as a model for the future design of backbone networks. Such solution can be topical in the result of different telecom operators' optical networks convergence. In this case a necessity to transmit differently modulated signals over a single optical fiber even with different bit rates may occur. This research is performed with OptSim 5.2 simulation software that numerically solves nonlinear SchrOdinger equation. The authors have revealed the optimal parameter configuration for developed combined transmission systems and obtained in system's channels detected signals bit-error-rate (BER) correlation diagrams. They represent BER as a function from different system's parameters such as channel output power level, optical amplifier fixed output power level and system's channels allotment in C-band of ITU-T (Telecommunication Standardization Sector of the International Telecommunications Union) recommended spectral grid. As well as these obtained BER values were compared with the results for similar system, where instead of standard single mode fiber (according ITU-T Rec. G.652 D) optical signals are transmitted over non-zero dispersion shifted fiber (ITU-T Rec. G. 655).