This study examined levels of polycyclic aromatic hydrocarbons (PAHs) in estuarine sediments in Licun (Qingdao, China) by gas chromatography under optimized conditions for sample pretreatment via ultrasonic extraction...This study examined levels of polycyclic aromatic hydrocarbons (PAHs) in estuarine sediments in Licun (Qingdao, China) by gas chromatography under optimized conditions for sample pretreatment via ultrasonic extraction, column chromatography, and thin layer chromatography. Methanol and dichloromethane (DCM)/methanol (2:1, v/v) were used in ultrasonic extraction, and DCM was used as eluate for column chromatography. The developing system consisted of n-hexane and DCM at a ratio of 9:1 (v/v), with DCM as the extraction solvent for PAHs-containing silica gel scraped off the plate. When the spiking level is 100 ng, total recoveries of spiked matrices for four target PAHs (phenanthrene, anthracene, pyrene and chrysene) were 83.7%, 76.4%, 85.8%, and 88.7%, respectively, with relative standard deviation (RSD) between 5.0% and 6.5% (n = 4). When the spiking level is 1000 ng, associated total recoveries were 78.6%, 72.7%, 82.7% and 85.3%, respectively, with RSD between 4.4% and 5.3% (n = 4). The opti-mized method was advantageous for determination of PAHs in complex matrix due to its effective sample purification.展开更多
We propose an efficient numerical method for two population models, based on the nonstandard finite difference (NSFD) schemes and composition methods with complex time steps. The NSFD scheme is able to give positive...We propose an efficient numerical method for two population models, based on the nonstandard finite difference (NSFD) schemes and composition methods with complex time steps. The NSFD scheme is able to give positive numerical solutions that satisfy the conservation law, which is a key property for biological population models. The accuracy is improved by using the composition methods with complex time steps. Numerical tests on the plankton nutrient model and whooping cough model are presented to show the efficiency and advantage of the proposed numerical method.展开更多
基金supported by the National Natural Science Foundation of China (NSFC project 20775074)
文摘This study examined levels of polycyclic aromatic hydrocarbons (PAHs) in estuarine sediments in Licun (Qingdao, China) by gas chromatography under optimized conditions for sample pretreatment via ultrasonic extraction, column chromatography, and thin layer chromatography. Methanol and dichloromethane (DCM)/methanol (2:1, v/v) were used in ultrasonic extraction, and DCM was used as eluate for column chromatography. The developing system consisted of n-hexane and DCM at a ratio of 9:1 (v/v), with DCM as the extraction solvent for PAHs-containing silica gel scraped off the plate. When the spiking level is 100 ng, total recoveries of spiked matrices for four target PAHs (phenanthrene, anthracene, pyrene and chrysene) were 83.7%, 76.4%, 85.8%, and 88.7%, respectively, with relative standard deviation (RSD) between 5.0% and 6.5% (n = 4). When the spiking level is 1000 ng, associated total recoveries were 78.6%, 72.7%, 82.7% and 85.3%, respectively, with RSD between 4.4% and 5.3% (n = 4). The opti-mized method was advantageous for determination of PAHs in complex matrix due to its effective sample purification.
文摘We propose an efficient numerical method for two population models, based on the nonstandard finite difference (NSFD) schemes and composition methods with complex time steps. The NSFD scheme is able to give positive numerical solutions that satisfy the conservation law, which is a key property for biological population models. The accuracy is improved by using the composition methods with complex time steps. Numerical tests on the plankton nutrient model and whooping cough model are presented to show the efficiency and advantage of the proposed numerical method.