The empirical study shows that the return rate of the stock price has a long memory, which can be described by fractal Brown motion. The fact that fractal Brown motion does not have the characteristics of Markov makes...The empirical study shows that the return rate of the stock price has a long memory, which can be described by fractal Brown motion. The fact that fractal Brown motion does not have the characteristics of Markov makes the American option value depends on the price change path of the underlying asset. And the ordinary American option pricing model underestimates the American option value. In order to fully reflect the long memory of the underlying asset return rates, we propose fractal American option pricing model, fractal Bermuda option pricing model, and a fractal combination of American option pricing model. Fractal American option value is greater than the ordinary American option value.展开更多
This paper attempts to study two-person nonzero-sum games for denumerable continuous-time Markov chains determined by transition rates,with an expected average criterion.The transition rates are allowed to be unbounde...This paper attempts to study two-person nonzero-sum games for denumerable continuous-time Markov chains determined by transition rates,with an expected average criterion.The transition rates are allowed to be unbounded,and the payoff functions may be unbounded from above and from below.We give suitable conditions under which the existence of a Nash equilibrium is ensured.More precisely,using the socalled "vanishing discount" approach,a Nash equilibrium for the average criterion is obtained as a limit point of a sequence of equilibrium strategies for the discounted criterion as the discount factors tend to zero.Our results are illustrated with a birth-and-death game.展开更多
文摘The empirical study shows that the return rate of the stock price has a long memory, which can be described by fractal Brown motion. The fact that fractal Brown motion does not have the characteristics of Markov makes the American option value depends on the price change path of the underlying asset. And the ordinary American option pricing model underestimates the American option value. In order to fully reflect the long memory of the underlying asset return rates, we propose fractal American option pricing model, fractal Bermuda option pricing model, and a fractal combination of American option pricing model. Fractal American option value is greater than the ordinary American option value.
基金supported by National Science Foundation for Distinguished Young Scholars of China (Grant No. 10925107)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2011)
文摘This paper attempts to study two-person nonzero-sum games for denumerable continuous-time Markov chains determined by transition rates,with an expected average criterion.The transition rates are allowed to be unbounded,and the payoff functions may be unbounded from above and from below.We give suitable conditions under which the existence of a Nash equilibrium is ensured.More precisely,using the socalled "vanishing discount" approach,a Nash equilibrium for the average criterion is obtained as a limit point of a sequence of equilibrium strategies for the discounted criterion as the discount factors tend to zero.Our results are illustrated with a birth-and-death game.