The study was conducted to develop height-diameter at breast height(HT-DBH) models for Alnus japonica in La Trinidad, Benguet,Philippines and evaluate their predictive capability.The six widely used nonlinear growth m...The study was conducted to develop height-diameter at breast height(HT-DBH) models for Alnus japonica in La Trinidad, Benguet,Philippines and evaluate their predictive capability.The six widely used nonlinear growth models that were selected in this study were the ChapmanRichards, Schnute, Modified logistic, Korf/Lundqvist,Weibull and Exponential. A total of 208 Alnus japonica trees were measured using standard diameter tape for DBH(1.3 m above the ground) and Vertex and transponder was used for the total height measurement. The performance of the developed models were evaluated using the fit statistics including coefficient of determination(R^2), root mean square error(RMSE), mean bias(ē), absolute mean difference(AMD), and Akaike Information Criterion(AIC). The lack-of-fit statistics was also performed for further evaluation of the performance of the models.Based on the evaluation criteria, all six models were able to determine the DBH-height relationships and fitted the data well. Using the rank analysis, the Weibull HT-DBH model had the best performance among the six commonly used nonlinear growth models. The results of this study will help forest managers especially in La Trinidad, Benguet to easily predict the total height using the Weibull model for Alnus japonica utilizing the DBH as the predicting variable.展开更多
A dual-scale turbulence model is applied to simulate cocurrent upward gas-liquid bubbly flows and validated with available experimental data. In the model, liquid phase turbulence is split into shear-induced and bubbl...A dual-scale turbulence model is applied to simulate cocurrent upward gas-liquid bubbly flows and validated with available experimental data. In the model, liquid phase turbulence is split into shear-induced and bubble- induced turbulence. Single-phase standard k-e model is used to compute shear-induced turbulence and another transport equation is added to model bubble-induced turbulence. In the latter transport equation, energy loss due to interface drag is the production term, and the characteristic length of bubble-induced turbulence, simply the bubble diameter in this work, is introduced to model the dissipation term. The simulated results agree well with experimental data of the test cases and it is demonstrated that the proposed dual-scale turbulence model outperforms other models. Analysis of the predicted turbulence shows that the main part of turbulent kinetic en- ergy is the bubble-induced one while the shear-induced turbulent viscosity predominates within turbulent vis- cosity, especially at the pipe center. The underlying reason is the apparently different scales for the two kinds of turbulence production mechanisms: the shear-induced turbulence is on the scale of the whole pipe while the bubble-induced turbulence is on the scale of bubble diameter. Therefore, the model reflects the multi-scale phe- nomenon involved in gas-liquid bubbly flows.展开更多
The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and ...The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.展开更多
There has not been an effective method to measure the resistivity of small-size sample of mineral and solid insulating material until now.According to the Chinese National Standard(GB/T1410-2006) and features of digit...There has not been an effective method to measure the resistivity of small-size sample of mineral and solid insulating material until now.According to the Chinese National Standard(GB/T1410-2006) and features of digital high resistance meter,a small electrode experimental installation was developed;it can work with current high resistance meter;the sample decreases to 18 mm from standard size 100 mm in diameter and reduces by 30.86 times in area.A three-electrode system is supported and precisely positioned by two insulating bases whose diameter is 60 mm and height is 20 mm,which ensures accuracy of device structure and reliability of measuring results.The key technological parameters are as follows:diameter of high voltage electrode is 18mm;diameter of measuring electrode is 14.6 mm;internal diameter and external diameter of guard electrode are 16 and 18 mm,respectively;the gap between guard electrode and measuring electrode is set at 0.6 mm.These parameters are adequate for the measurement of flat specimen of mineral and solid insulating material whose diameter is 18 mm.According to the confirmatory experiment on the volume resistivity and surface resistivity,the measuring results are almost the same,using a small electrode experimental installation and a standard electrode.展开更多
Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamic...Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode-slip or twin propagation--of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires.展开更多
基金support of the Forest Science and Technology Projects [Project Nos. 2013069D10-1819-AA03 and 2014068E10-1819-AA03] provided by the Korea Forest Service
文摘The study was conducted to develop height-diameter at breast height(HT-DBH) models for Alnus japonica in La Trinidad, Benguet,Philippines and evaluate their predictive capability.The six widely used nonlinear growth models that were selected in this study were the ChapmanRichards, Schnute, Modified logistic, Korf/Lundqvist,Weibull and Exponential. A total of 208 Alnus japonica trees were measured using standard diameter tape for DBH(1.3 m above the ground) and Vertex and transponder was used for the total height measurement. The performance of the developed models were evaluated using the fit statistics including coefficient of determination(R^2), root mean square error(RMSE), mean bias(ē), absolute mean difference(AMD), and Akaike Information Criterion(AIC). The lack-of-fit statistics was also performed for further evaluation of the performance of the models.Based on the evaluation criteria, all six models were able to determine the DBH-height relationships and fitted the data well. Using the rank analysis, the Weibull HT-DBH model had the best performance among the six commonly used nonlinear growth models. The results of this study will help forest managers especially in La Trinidad, Benguet to easily predict the total height using the Weibull model for Alnus japonica utilizing the DBH as the predicting variable.
基金Supported by the National Natural Science Foundation of China(U1162125,U1361112)the National High Technology Research and Development Program of China(2011AA05A205)
文摘A dual-scale turbulence model is applied to simulate cocurrent upward gas-liquid bubbly flows and validated with available experimental data. In the model, liquid phase turbulence is split into shear-induced and bubble- induced turbulence. Single-phase standard k-e model is used to compute shear-induced turbulence and another transport equation is added to model bubble-induced turbulence. In the latter transport equation, energy loss due to interface drag is the production term, and the characteristic length of bubble-induced turbulence, simply the bubble diameter in this work, is introduced to model the dissipation term. The simulated results agree well with experimental data of the test cases and it is demonstrated that the proposed dual-scale turbulence model outperforms other models. Analysis of the predicted turbulence shows that the main part of turbulent kinetic en- ergy is the bubble-induced one while the shear-induced turbulent viscosity predominates within turbulent vis- cosity, especially at the pipe center. The underlying reason is the apparently different scales for the two kinds of turbulence production mechanisms: the shear-induced turbulence is on the scale of the whole pipe while the bubble-induced turbulence is on the scale of bubble diameter. Therefore, the model reflects the multi-scale phe- nomenon involved in gas-liquid bubbly flows.
文摘The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.
基金supported by the National Natural Science Foundation of China (Grant No. 50974025)the National Key Technologies R & D Program of China (Grant No. 2004BA810B02)+2 种基金the Applied Foundation of Basic Research in Sichuan Province (Grant No. 07JY029-029)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20095122110015)the Scientific Research Foundation of the Education Ministry for Returned Chinese Scholars, China (Grant No. 2010-32)
文摘There has not been an effective method to measure the resistivity of small-size sample of mineral and solid insulating material until now.According to the Chinese National Standard(GB/T1410-2006) and features of digital high resistance meter,a small electrode experimental installation was developed;it can work with current high resistance meter;the sample decreases to 18 mm from standard size 100 mm in diameter and reduces by 30.86 times in area.A three-electrode system is supported and precisely positioned by two insulating bases whose diameter is 60 mm and height is 20 mm,which ensures accuracy of device structure and reliability of measuring results.The key technological parameters are as follows:diameter of high voltage electrode is 18mm;diameter of measuring electrode is 14.6 mm;internal diameter and external diameter of guard electrode are 16 and 18 mm,respectively;the gap between guard electrode and measuring electrode is set at 0.6 mm.These parameters are adequate for the measurement of flat specimen of mineral and solid insulating material whose diameter is 18 mm.According to the confirmatory experiment on the volume resistivity and surface resistivity,the measuring results are almost the same,using a small electrode experimental installation and a standard electrode.
文摘Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode-slip or twin propagation--of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires.