The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collect...The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collected. Based on the preprocessing for the raw data, a computational program for complexity measure is compiled and the complexity measures of all samples are calculated. The mean value and standard error of complexity measure of control group is as 0.33 and 0.10, and the normal group is as 0.53 and 0.08. When the confidence degree is 0.05, the confidence interval of the normal population mean of complexity measures for the control group is (0.2871,0.3652), and (0.4944,0.5552) for the normal group. The statistic results show that the normal samples and patient samples can be clearly distinguished by the value of measures. In clinical medicine, the results can be used to be a reference to evaluate the function or state, to diagnose disease, to monitor the rehabilitation progress of the brain.展开更多
We present a robust mesh sharpening approach to reconstructing sharp features from blended or chamfered features, even with noise and aliasing errors. Feature regions were first recognized via normal variation accordi...We present a robust mesh sharpening approach to reconstructing sharp features from blended or chamfered features, even with noise and aliasing errors. Feature regions were first recognized via normal variation according to the user's input, and then normal filtering was applied to faces of feature regions. Finally, the vertices of the feature region were gradually updated based on new face normals using a least-squares error criterion. Experimental results demonstrate that the method is effective and robust in sharpening meshes.展开更多
基金International Joint Research Program from the Ministry of Science and Technology of Chinagrant number:20070667+1 种基金Education Commission of Chongqing of Chinagrant number:KJ081209
文摘The aim of this study is to identify the functions and states of the brains according to the values of the complexity measure of the EEG signals. The EEG signals of 30 normal samples and 30 patient samples are collected. Based on the preprocessing for the raw data, a computational program for complexity measure is compiled and the complexity measures of all samples are calculated. The mean value and standard error of complexity measure of control group is as 0.33 and 0.10, and the normal group is as 0.53 and 0.08. When the confidence degree is 0.05, the confidence interval of the normal population mean of complexity measures for the control group is (0.2871,0.3652), and (0.4944,0.5552) for the normal group. The statistic results show that the normal samples and patient samples can be clearly distinguished by the value of measures. In clinical medicine, the results can be used to be a reference to evaluate the function or state, to diagnose disease, to monitor the rehabilitation progress of the brain.
基金supported by the Hi-Tech Research and Development Pro-gram (863) of China (Nos. 2007AA01Z311 and 2007AA04Z1A5)the Doctoral Fund of MOE of China (No. 20060335114)the Science and Technology Program of Zhejiang Province, China (No. 2007C21006)
文摘We present a robust mesh sharpening approach to reconstructing sharp features from blended or chamfered features, even with noise and aliasing errors. Feature regions were first recognized via normal variation according to the user's input, and then normal filtering was applied to faces of feature regions. Finally, the vertices of the feature region were gradually updated based on new face normals using a least-squares error criterion. Experimental results demonstrate that the method is effective and robust in sharpening meshes.