The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the...The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.展开更多
Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be o...Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.展开更多
Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are q...Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.展开更多
Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the li...Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the line integral, the WVH transform was derived by combining the Wigner Ville distribution (WVD) and the Hough transform (HT) together. The new transform was then verified with computer by the simulated SAR echoes. Results and Conclusion The correctness and the validity of the WVH transform were proved by the computer simulation. Compared with the conventional WVD HT method, the new approach based on the WVHT can simplify the processing procedure, it can translate the chirp echoes of multi targets of SAR from the time domain into the parameter space directly, while suppressing the cross terms of WVD and estimating the motion coefficients for the final imaging. It is obvious that the WVH transform can be also used in other cases for the chirp signal detection.展开更多
The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy ...The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy to that with high accuracy cannot guarantee a high precision of transformation.In this paper,a combined method of similarity transformation and regressive approximating is presented.The local error accumulation and distortion are taken into consideration and the precision of coordinate system is improved by using the recommended method展开更多
针对串行双基地合成孔径雷达(SAR)中的距离徙动的空变问题,该文提出了一种变标逆傅里叶变换成像算法,通过两次相位相乘和一次卷积操作实现距离徙动的精确校正。该算法基于一种由几何关系公式方法推导出的严格解析双基点目标频谱,可以完...针对串行双基地合成孔径雷达(SAR)中的距离徙动的空变问题,该文提出了一种变标逆傅里叶变换成像算法,通过两次相位相乘和一次卷积操作实现距离徙动的精确校正。该算法基于一种由几何关系公式方法推导出的严格解析双基点目标频谱,可以完成长基线距离比条件下的串行双基 SAR 的数据处理。仿真实验和对比实验验证了该算法的有效性和优越性。此外,不同于其他的变标算法,该变标逆傅里叶变换(SIFT)成像算法不依赖于信号的线性调频特性,同样适用于相位编码信号,有更广的适用范围。展开更多
For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge...For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge detection and center line extraction. First, the two-side edge of laser stripe is detected using the principal component angle-based progressive probabilistic Hough transform and its width is calculated through the distance between these two edges. Secondly, the center line of laser strip is extracted with 2D Taylor expansion at a sub-pixel level and the laser plane is calibrated with the 3D reconstructed coordinates from the extracted 2D sub-pixel ones. Experimental results demonstrate that the proposed method can not only extract the laser stripe at a high speed, nearly average 78 ms/frame, but also calibrate the coplanar laser stripes at a low error, limited to 0.3 mm. The proposed algorithm can satisfy the system requirement of two-side edge detection and center line extraction, and rapid speed, high precision, as well as strong anti-jamming.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
In this paper,by using the G_(m,1)~(1,1)-system,we study Darboux transformations for space-like isothermic surfaces in Minkowski space R~(m,1),where G_(m,1)~(1,1)=O(m+1,2)/O(m,1)×O(1,1).
In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the un...In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square(RMS) error of distance was 0.000 7 mm.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.41104069 and 41274124)the National 973 Project(Nos.2014CB239006 and 2011CB202402)+1 种基金the Shandong Natural Science Foundation of China(No.ZR2011DQ016)Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The mapping method is a forward-modeling method that transforms the irregular surface to horizontal by mapping the rectangular grid as curved; moreover, the wave field calculations move from the physical domain to the calculation domain. The mapping method deals with the irregular surface and the low-velocity layer underneath it using a fine grid. For the deeper high-velocity layers, the use of a fine grid causes local oversampling. In addition, when the irregular surface is transformed to horizontal, the flattened interface below the surface is transformed to curved, which produces inaccurate modeling results because of the presence of ladder-like burrs in the simulated seismic wave. Thus, we propose the mapping method based on the dual-variable finite-difference staggered grid. The proposed method uses different size grid spacings in different regions and locally variable time steps to match the size variability of grid spacings. Numerical examples suggest that the proposed method requires less memory storage capacity and improves the computational efficiency compared with forward modeling methods based on the conventional grid.
基金supported by the National Natural Science Foundation of China (Grant No. 40974073)the National 863 Program (Grant No.2007AA060504)the National 973 Program (Grant No. 2007CB209605) and CNPC Geophysical Laboratories
文摘Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.
文摘Based on the inertial navigation system, the influences of the excursion of the inertial navigation system and the measurement error of the wireless pressure altimeter on the rotation and scale of the real image are quantitatively analyzed in scene matching. The log-polar transform (LPT) is utilized and an anti-rotation and anti- scale image matching algorithm is proposed based on the image edge feature point extraction. In the algorithm, the center point is combined with its four-neighbor points, and the corresponding computing process is put forward. Simulation results show that in the image rotation and scale variation range resulted from the navigation system error and the measurement error of the wireless pressure altimeter, the proposed image matching algo- rithm can satisfy the accuracy demands of the scene aided navigation system and provide the location error-correcting information of the system.
文摘Aim To propose a generalized and closed representation of the Wigner Ville Hough transform(WVHT), for the moving target detection and imaging in the design of synthetic aperture radar(SAR). Methods Based on the line integral, the WVH transform was derived by combining the Wigner Ville distribution (WVD) and the Hough transform (HT) together. The new transform was then verified with computer by the simulated SAR echoes. Results and Conclusion The correctness and the validity of the WVH transform were proved by the computer simulation. Compared with the conventional WVD HT method, the new approach based on the WVHT can simplify the processing procedure, it can translate the chirp echoes of multi targets of SAR from the time domain into the parameter space directly, while suppressing the cross terms of WVD and estimating the motion coefficients for the final imaging. It is obvious that the WVH transform can be also used in other cases for the chirp signal detection.
文摘The similarity transformation model between different coordinate systems is not accurate enough to describe the discrepancy of them.Therefore,the coordinate transformation from the coordinate frame with poor accuracy to that with high accuracy cannot guarantee a high precision of transformation.In this paper,a combined method of similarity transformation and regressive approximating is presented.The local error accumulation and distortion are taken into consideration and the precision of coordinate system is improved by using the recommended method
基金Supported by the National Natural Science Foundation of China(No. 61222108, 60890072)the National Research Program of China ("973" Program) (No. 2010CB731903)
文摘针对串行双基地合成孔径雷达(SAR)中的距离徙动的空变问题,该文提出了一种变标逆傅里叶变换成像算法,通过两次相位相乘和一次卷积操作实现距离徙动的精确校正。该算法基于一种由几何关系公式方法推导出的严格解析双基点目标频谱,可以完成长基线距离比条件下的串行双基 SAR 的数据处理。仿真实验和对比实验验证了该算法的有效性和优越性。此外,不同于其他的变标算法,该变标逆傅里叶变换(SIFT)成像算法不依赖于信号的线性调频特性,同样适用于相位编码信号,有更广的适用范围。
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Research and Innovation Project for College Graduates of Jiangsu Province(No.CXZZ13_0086)Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1401)
文摘For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge detection and center line extraction. First, the two-side edge of laser stripe is detected using the principal component angle-based progressive probabilistic Hough transform and its width is calculated through the distance between these two edges. Secondly, the center line of laser strip is extracted with 2D Taylor expansion at a sub-pixel level and the laser plane is calibrated with the 3D reconstructed coordinates from the extracted 2D sub-pixel ones. Experimental results demonstrate that the proposed method can not only extract the laser stripe at a high speed, nearly average 78 ms/frame, but also calibrate the coplanar laser stripes at a low error, limited to 0.3 mm. The proposed algorithm can satisfy the system requirement of two-side edge detection and center line extraction, and rapid speed, high precision, as well as strong anti-jamming.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
文摘In this paper,by using the G_(m,1)~(1,1)-system,we study Darboux transformations for space-like isothermic surfaces in Minkowski space R~(m,1),where G_(m,1)~(1,1)=O(m+1,2)/O(m,1)×O(1,1).
基金Supported by the National Natural Science Foundation of China(No.51105273)
文摘In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square(RMS) error of distance was 0.000 7 mm.