To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) a...To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy.展开更多
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP...On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.展开更多
The aim of this paper is to present construction of finite element multiscaling function with three coefficients. In order to illuminate the result, two examples are given finally.
For a given compactly supported scaling fun ct ion supported over [0,3]×[0,3], we present an algorithm to construct compac t ly supported orthogonal wavelets. By this algorithm, the symbol function of the associa...For a given compactly supported scaling fun ct ion supported over [0,3]×[0,3], we present an algorithm to construct compac t ly supported orthogonal wavelets. By this algorithm, the symbol function of the associated wavelets can be constructed explicitly.展开更多
We study the kinetic behavior of a two-species aggregation-migration model in which an irreversible aggregation occurs between any two clusters of the same species and a reversible migration occurs simultaneously betw...We study the kinetic behavior of a two-species aggregation-migration model in which an irreversible aggregation occurs between any two clusters of the same species and a reversible migration occurs simultaneously between two different species. For a simple model with constant aggregation rates and with the migration rates and , we find that the evolution behavior of the system depends crucially on the values of the indexes υ<SUB>1</SUB> and υ<SUB>2</SUB>. The aggregate size distribution of either species obeys a conventional scaling law for most cases. Moreover, we also generalize the two-species system to the multi-species case and analyze its kinetic behavior under the symmetrical conditions.展开更多
Triangular norm is a powerful tool in the theory research and application development of fuzzy sets. In this paper, using the triang norm, we introduce some concepts such as fuzzy algebra, fuzzy a algebra and fuzzy mo...Triangular norm is a powerful tool in the theory research and application development of fuzzy sets. In this paper, using the triang norm, we introduce some concepts such as fuzzy algebra, fuzzy a algebra and fuzzy monotone class, and discuss the relations among them,obtaining the following main conclusions:Theorem 1: Let (I,S,T,C) be a norm spetem, S and T be dual norm,(Ⅰ) If is a fuzzy σ algebra, then is also a fuzzy monotooe class;(Ⅱ ) If a fuzzy algebra is a fuzzy monotone class, then is also a fuzzy σ algebra.Theorem 2: If φ(X) is a fuzzy algebra, then m (φ) =σ(φ).展开更多
A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iterati...A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.展开更多
In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space the...In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = ER(θ) - iГ(θ)/2, as a function of the scaling parameter θ, we find that for potential barrier scattering, the condition dГ(θI)/dθ = 0 uniquely determines the scaling parameter 8. The condition d ER (θR)/ dθ = 0 is merely a consequence of the Virial theorem and θI =θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formMism for resonances in scattering over a potential barrier.展开更多
When a group of mobile agents track a target,they can locate themselves and the target in a cooperative manner.To maximize the group advantage,a parallel integration strategy of cooperative target-localization(CTL)and...When a group of mobile agents track a target,they can locate themselves and the target in a cooperative manner.To maximize the group advantage,a parallel integration strategy of cooperative target-localization(CTL)and cooperative self-localization(CSL)is designed.Firstly,a global cost function containing the agents’positions and the target’s position is established.Secondly,along with the agents’positions being re-estimated during CTL,the Utransform is employed to propagate the error covariance of the position estimations among the agents.The simulation results show that,the proposal exploits more information for locating the target and the agents than the cases where CTL and CSL run separately,and the global optimal position estimations of the agents and the target are obtained.展开更多
This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical ana...This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomic molecular predissociation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.展开更多
基金Projects(60775049,60805033) supported by the National Natural Science Foundation of ChinaProject(2007AA704317) supported by the National High Technology Research and Development Program of China
文摘To overcome the influence of on-orbit extreme temperature environment on the tool pose(position and orientation) accuracy of a space robot,a new self-calibration method based on a measurement camera(hand-eye vision) attached to its end-effector was presented.Using the relative pose errors between the two adjacent calibration positions of the space robot,the cost function of the calibration was built,which was different from the conventional calibration method.The particle swarm optimization algorithm(PSO) was used to optimize the function to realize the geometrical parameter identification of the space robot.The above calibration method was carried out through self-calibration simulation of a six-DOF space robot whose end-effector was equipped with hand-eye vision.The results showed that after calibration there was a significant improvement of tool pose accuracy in a set of independent reference positions,which verified the feasibility of the method.At the same time,because it was unnecessary for this method to know the transformation matrix from the robot base to the calibration plate,it reduced the complexity of calibration model and shortened the error propagation chain,which benefited to improve the calibration accuracy.
文摘On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.
基金Supported by the Natural Science Foundation of the Education Department of Henan Province(2006110001)Supported by the Natural Science Foundation of Henan University of China (XK03YBSX002)
文摘The aim of this paper is to present construction of finite element multiscaling function with three coefficients. In order to illuminate the result, two examples are given finally.
文摘For a given compactly supported scaling fun ct ion supported over [0,3]×[0,3], we present an algorithm to construct compac t ly supported orthogonal wavelets. By this algorithm, the symbol function of the associated wavelets can be constructed explicitly.
文摘We study the kinetic behavior of a two-species aggregation-migration model in which an irreversible aggregation occurs between any two clusters of the same species and a reversible migration occurs simultaneously between two different species. For a simple model with constant aggregation rates and with the migration rates and , we find that the evolution behavior of the system depends crucially on the values of the indexes υ<SUB>1</SUB> and υ<SUB>2</SUB>. The aggregate size distribution of either species obeys a conventional scaling law for most cases. Moreover, we also generalize the two-species system to the multi-species case and analyze its kinetic behavior under the symmetrical conditions.
文摘Triangular norm is a powerful tool in the theory research and application development of fuzzy sets. In this paper, using the triang norm, we introduce some concepts such as fuzzy algebra, fuzzy a algebra and fuzzy monotone class, and discuss the relations among them,obtaining the following main conclusions:Theorem 1: Let (I,S,T,C) be a norm spetem, S and T be dual norm,(Ⅰ) If is a fuzzy σ algebra, then is also a fuzzy monotooe class;(Ⅱ ) If a fuzzy algebra is a fuzzy monotone class, then is also a fuzzy σ algebra.Theorem 2: If φ(X) is a fuzzy algebra, then m (φ) =σ(φ).
基金Project(50874064) supported by the National Natural Science Foundation of ChinaKey Project(Z2007F10) supported by the Natural Science Foundation of Shandong Province,China
文摘A new version of particle swarm optimization(PSO) called discontinuous flying particle swarm optimization(DFPSO) was proposed,where not all of the particles refreshed their positions and velocities during each iteration step and the probability of each particle in refreshing its position and velocity was dependent on its objective function value.The effect of population size on the results was investigated.The results obtained by DFPSO have an average difference of 6% compared with those by PSO,whereas DFPSO consumes much less evaluations of objective function than PSO does.
文摘In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = ER(θ) - iГ(θ)/2, as a function of the scaling parameter θ, we find that for potential barrier scattering, the condition dГ(θI)/dθ = 0 uniquely determines the scaling parameter 8. The condition d ER (θR)/ dθ = 0 is merely a consequence of the Virial theorem and θI =θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formMism for resonances in scattering over a potential barrier.
文摘When a group of mobile agents track a target,they can locate themselves and the target in a cooperative manner.To maximize the group advantage,a parallel integration strategy of cooperative target-localization(CTL)and cooperative self-localization(CSL)is designed.Firstly,a global cost function containing the agents’positions and the target’s position is established.Secondly,along with the agents’positions being re-estimated during CTL,the Utransform is employed to propagate the error covariance of the position estimations among the agents.The simulation results show that,the proposal exploits more information for locating the target and the agents than the cases where CTL and CSL run separately,and the global optimal position estimations of the agents and the target are obtained.
文摘This paper is concerned with the determination of a unique scaling parameter in complex scaling analysis and with accurate calculation of dynamics resonances. In the preceding paper we have presented a theoretical analysis and provided a formalism for dynamical resonance calculations. In this paper we present accurate numerical results for two non-trivial dynamical processes, namely, models of diatomic molecular predissociation and of barrier potential scattering for resonances. The results presented in this paper confirm our theoretical analysis, remove a theoretical ambiguity on determination of the complex scaling parameter, and provide an improved understanding for dynamical resonance calculations in rigged Hilbert space.