We study critical behaviors of the reduced fidelity susceptibility for two neighboring sites in the onedimensional transverse field Ising model. It is found that the divergent behaviors of the susceptibility take the ...We study critical behaviors of the reduced fidelity susceptibility for two neighboring sites in the onedimensional transverse field Ising model. It is found that the divergent behaviors of the susceptibility take the form of square of logarithm, in contrast with the global ground-state fidelity susceptibility which is power divergence. In order to perform a scaling analysis, we take the square root of the susceptibility and determine the scaling exponent analytically and the result is further confirmed by numerical calculations.展开更多
Crop-water production functions quantitatively describe the relationship between crop yield and field evapotranspiration. The crop water sensitivity indexes of crop-water production functions, a key factor for optimiz...Crop-water production functions quantitatively describe the relationship between crop yield and field evapotranspiration. The crop water sensitivity indexes of crop-water production functions, a key factor for optimizing irrigation scheduling in case of water scarcity, are usually obtained from field experiments or other sources for crop growth stages, while their values in shorter intervals are preferred for practical irrigation scheduling. We proposed a method to downscale the sensitivity index from growth stages to shorter intervals by monotone piecewise cubic interpolation of the cumulative sensitivity index curve. This method was used to estimate sensitivity indexes in irrigation intervals of about 10 d for corn and wheat in central Shanxi Province of China. Results showed that the downscaled sensitivity index could reflect the impact of water stress on crop growth both at different growth stages and within each stage. Scenario analysis of water stress at a single growth stage of wheat showed the rationality of downscaling water sensitivity index from growth stages to shorter intervals through interpolation of cumulative sensitivity index, and this proposed downscaling method was superior to the traditional linear downscalin~ method.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos. 10874151 and 10935010National Fundamental Research Program of China under Grant No. 2006CB921205+1 种基金Program for New Century Excellent Talents in University (NCET)Science Foundation of Chinese University
文摘We study critical behaviors of the reduced fidelity susceptibility for two neighboring sites in the onedimensional transverse field Ising model. It is found that the divergent behaviors of the susceptibility take the form of square of logarithm, in contrast with the global ground-state fidelity susceptibility which is power divergence. In order to perform a scaling analysis, we take the square root of the susceptibility and determine the scaling exponent analytically and the result is further confirmed by numerical calculations.
基金Supported by the National Natural Science Foundation of China(No.51279077)the National Key Technology R&D Program of China(No.2013BAB05B03)
文摘Crop-water production functions quantitatively describe the relationship between crop yield and field evapotranspiration. The crop water sensitivity indexes of crop-water production functions, a key factor for optimizing irrigation scheduling in case of water scarcity, are usually obtained from field experiments or other sources for crop growth stages, while their values in shorter intervals are preferred for practical irrigation scheduling. We proposed a method to downscale the sensitivity index from growth stages to shorter intervals by monotone piecewise cubic interpolation of the cumulative sensitivity index curve. This method was used to estimate sensitivity indexes in irrigation intervals of about 10 d for corn and wheat in central Shanxi Province of China. Results showed that the downscaled sensitivity index could reflect the impact of water stress on crop growth both at different growth stages and within each stage. Scenario analysis of water stress at a single growth stage of wheat showed the rationality of downscaling water sensitivity index from growth stages to shorter intervals through interpolation of cumulative sensitivity index, and this proposed downscaling method was superior to the traditional linear downscalin~ method.