The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specim...The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.展开更多
文摘The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.