期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
用AUTOLISP函数为CAD增加水工专用标注功能
1
作者 吕希银 《工程设计CAD及自动化》 1996年第3期34-37,共4页
AUTO-CAD是一种通用图形支撑软件,具有很好的交互性。但水工专业绘图中一些专用标注AUTO-CAD没有提供,在使用中感到很不方便。我们通过增加AUTOLISP函数方法,解决了水工绘图中桩号、高程、示坡线、汉字标注等问题。这些函数主要通... AUTO-CAD是一种通用图形支撑软件,具有很好的交互性。但水工专业绘图中一些专用标注AUTO-CAD没有提供,在使用中感到很不方便。我们通过增加AUTOLISP函数方法,解决了水工绘图中桩号、高程、示坡线、汉字标注等问题。这些函数主要通过对CAD图形块(标注符号)和CAD基本命令的引用解决水工专用标注要求,只要将它们加入到ACAD.LSP文件中,系统即可自动调入,就如同使用CAD命令一样方便,而且操作简单,符合工程技术人员的标注习惯,在应用中取得了满意的效果。 展开更多
关键词 水工制图 CAD AUTOLISP 汉字标准 标注函数
下载PDF
基于多通道卷积神经网络的非结构化数据标注 被引量:1
2
作者 米启超 赵红梅 林丽萍 《计算机仿真》 北大核心 2021年第6期400-404,共5页
非结构化数据存在差异性,对标注模型的构建存在不足,影响标注质量。提出基于多通道卷积神经网络的非结构化数据标注方法。建立Hive分布式查询框架,对其中与标注目标相关的数据进行相似性查找,同时建立众包标注集,确定相关标注概念。对... 非结构化数据存在差异性,对标注模型的构建存在不足,影响标注质量。提出基于多通道卷积神经网络的非结构化数据标注方法。建立Hive分布式查询框架,对其中与标注目标相关的数据进行相似性查找,同时建立众包标注集,确定相关标注概念。对标注集中的标注差异性,利用多通道卷积神经网络对其差异性进行确认,并确定标注任务函数。利用标注任务函数,建立任务标注模型,利用模型中求得函数解值完成标注任务。为了验证设计的非结构化数据标注方法的可行性,实验结果证明设计方法下得到的标注质量更高,方法性能更好,满足设计初衷。 展开更多
关键词 众包标注 数据标注 非结构化 标注概念 标注任务函数
下载PDF
A Note to the Objective Function for Centralized Case in Netessine and Rudi's Inventory Model
3
作者 李小申 王仲英 高克权 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第1期56-60,共5页
Netessine and Rudi(2003) consider a consumer-driven substitution problem with an arbitrary number of products under both centralized management and competition. They obtain analytically tractable solutions, establis... Netessine and Rudi(2003) consider a consumer-driven substitution problem with an arbitrary number of products under both centralized management and competition. They obtain analytically tractable solutions, establish concavity of the objective function, i.e., the expected profit function generated by each product and uniqueness of the equilibrium for the decentralize case. For the centralized case, they indicate that the objective function, i.e., the expected profit function, might not be concave and not even quasiconcave. In this note we show, for the centralize case, that the objective function is submodular, and partially verify Netessine and Rudi's observation that the objective function be unimodal in each of the decision variables for some case. 展开更多
关键词 operation research INVENTORY SUBSTITUTION submodular
下载PDF
A Simple Construction of Gabor Frames for L^2(R)
4
作者 LU Da-yong TIAN Jin-yu 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第2期227-233,共7页
In this paper, we give a method which aUows us to construct a class of Parseval frames for L2(R) from Fourier frame for L2(X). The result shows that the function which generates a Oabor frame by translations and m... In this paper, we give a method which aUows us to construct a class of Parseval frames for L2(R) from Fourier frame for L2(X). The result shows that the function which generates a Oabor frame by translations and modulations has "good" properties, i.e., it is suifficiently smooth and compactly supported. 展开更多
关键词 Gabor frame Fourier frame Parseval frame bell function
下载PDF
Improved YOLOX Remote Sensing Image Object Detection Algorithm
5
作者 LIU Beibei DENG Yansong +3 位作者 LYU He ZHOU Chenchen TANG Xuezhi XIANG Wei 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第5期439-452,共14页
Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensin... Remote sensing image object detection is one of the core tasks of remote sensing image processing.In recent years,with the development of deep learning,great progress has been made in object detection in remote sensing.However,the problems of dense small targets,complex backgrounds and poor target positioning accuracy in remote sensing images make the detection of remote sensing targets still difficult.In order to solve these problems,this research proposes a remote sensing image object detection algorithm based on improved YOLOX-S.Firstly,the Efficient Channel Attention(ECA)module is introduced to improve the network's ability to extract features in the image and suppress useless information such as background;Secondly,the loss function is optimized to improve the regression accuracy of the target bounding box.We evaluate the effectiveness of our algorithm on the NWPU VHR-10 remote sensing image dataset,the experimental results show that the detection accuracy of the algorithm can reach 95.5%,without increasing the amount of parameters.It is significantly improved compared with that of the original YOLOX-S network,and the detection performance is much better than that of some other mainstream remote sensing image detection methods.Besides,our method also shows good generalization detection performance in experiments on aircraft images in the RSOD dataset. 展开更多
关键词 remote sensing images object detection YOLOX-S attention module loss function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部