期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合标签与内容感知的用户群信息推荐仿真 被引量:1
1
作者 赵慧娜 李国贞 王佳伟 《计算机仿真》 北大核心 2022年第1期482-485,493,共5页
信息推荐有利于提高用户获取所需数据的效率,但是在网络信息与用户激增的过程中,会使数据呈现一定的稀疏性,而且用户兴趣也容易产生变化。为了增强推荐系统的性能,提出了融合标签与内容感知的用户群信息推荐算法。依据内容语料库将词去... 信息推荐有利于提高用户获取所需数据的效率,但是在网络信息与用户激增的过程中,会使数据呈现一定的稀疏性,而且用户兴趣也容易产生变化。为了增强推荐系统的性能,提出了融合标签与内容感知的用户群信息推荐算法。依据内容语料库将词去重组成异构图,利用邻域属性对其进行编码,完成词向二维向量的映射,再采用卷积神经网络对内容信息进行特征识别,实现内容感知并得到相应标签。考虑标签偏好对用户兴趣的反映,建立偏好模型。其间先是分析了评价和影响程度与偏好的关系,随后为了搜索更多的信息推荐依据,引入了时间和相似度影响来更新偏好模型,根据偏好模型与标签的比较得出推荐结果。通过仿真,确定了偏好模型的参数取值与最佳推荐数量,并基于此得到推荐算法的Precision值为0.354,Recall值为0.592,F-Measure值为0.443,结果显示各项指标均高于对比方法,表明了算法在用户群信息推荐方面的有效性和优越性。 展开更多
关键词 内容感知 标签偏好模型 卷积神经网络 相似度 信息推荐
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部