期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于标签相似度的不良信息多标签分类方法 被引量:8
1
作者 刘卓然 胡杨 +3 位作者 刘骊 冯旭鹏 刘利军 黄青松 《计算机应用研究》 CSCD 北大核心 2016年第4期989-992,共4页
在多标记分类中,标签与标签之间的相关关系是影响分类效果的一个重要因子。传统的经典多标签分类方法如BR算法、ML-KNN算法等,忽略了标签之间的相关关系对实际分类的影响,分类效果一直不能令人满意;面对类别关联度极高的不良信息的多标... 在多标记分类中,标签与标签之间的相关关系是影响分类效果的一个重要因子。传统的经典多标签分类方法如BR算法、ML-KNN算法等,忽略了标签之间的相关关系对实际分类的影响,分类效果一直不能令人满意;面对类别关联度极高的不良信息的多标签分类,分类效果更是大打折扣。针对上述问题,通过改进经典的多标签分类算法RAk EL,首先根据训练文本计算出各标签之间的相似度系数,然后再根据自定义不良信息层次关系计算出综合标签相似度系数矩阵,最后在RAk EL算法投票过程中根据综合标签相似度与中心标签重新确定最终的结果标签集合。与传统的分类方法在真实的语料库上进行多标签分类效果对比,结果证明,该方法对不良信息分类具有较好的效果。 展开更多
关键词 标签分类 标签之间的相关关系 不良信息 中心标签 标签相似度系数矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部