期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于层级图标签表示网络的多标签文本分类 被引量:1
1
作者 徐江玲 陈兴荣 《计算机应用研究》 CSCD 北大核心 2024年第2期388-392,407,共6页
多标签文本分类是一项基础而实用的任务,其目的是为文本分配多个可能的标签。近年来,人们提出了许多基于深度学习的标签关联模型,以结合标签的信息来学习文本的语义表示,取得了良好的分类性能。通过改进标签关联的建模和文本语义表示来... 多标签文本分类是一项基础而实用的任务,其目的是为文本分配多个可能的标签。近年来,人们提出了许多基于深度学习的标签关联模型,以结合标签的信息来学习文本的语义表示,取得了良好的分类性能。通过改进标签关联的建模和文本语义表示来推进这一研究方向。一方面,构建的层级图标签表示,除了学习每个标签的局部语义外,还进一步研究多个标签共享的全局语义;另一方面,为了捕捉标签和文本内容间的联系并加以利用,使用标签文本注意机制来引导文本特征的学习过程。在三个多标签基准数据集上的实验表明,该模型与其他方法相比具有更好的分类性能。 展开更多
关键词 标签文本分类 标签相关性 层级图表示 标签组嵌入 标签文本注意力
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部