期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Gate机制与Bi-LSTM-CRF的汉语语义角色标注 被引量:4
1
作者 张苗苗 张玉洁 +2 位作者 刘明童 徐金安 陈钰枫 《计算机与现代化》 2018年第4期1-6,31,共7页
目前,语义角色标注大多基于双向长短时记忆网络(Bi-LSTM)。但是,由于词向量表示由上下文窗口中的词嵌入拼接得到,导致其依赖于左右词嵌入的联合作用。针对该问题,引入Gate机制对词向量表示进行调整。为了获取更深层次的语义信息,对Bi-L... 目前,语义角色标注大多基于双向长短时记忆网络(Bi-LSTM)。但是,由于词向量表示由上下文窗口中的词嵌入拼接得到,导致其依赖于左右词嵌入的联合作用。针对该问题,引入Gate机制对词向量表示进行调整。为了获取更深层次的语义信息,对Bi-LSTM的深度进行扩展。此外,引入标签转移概率矩阵进行约束,并且使用条件随机场(CRF)融合全局标签信息得出最优标注序列。实验结果表明,该方法使得汉语语义角色标注的F1值提高1.71%。 展开更多
关键词 汉语语义角色标注 Gate机制 Bi-LSTM-CRF 标签转移概率矩阵
下载PDF
Two-way Markov random walk transductive learning algorithm
2
作者 李宏 卢小燕 +1 位作者 刘玮文 Clement K.Kirui 《Journal of Central South University》 SCIE EI CAS 2014年第3期970-977,共8页
Researchers face many class prediction challenges stemming from a small size of training data vis-a-vis a large number of unlabeled samples to be predicted. Transductive learning is proposed to utilize information abo... Researchers face many class prediction challenges stemming from a small size of training data vis-a-vis a large number of unlabeled samples to be predicted. Transductive learning is proposed to utilize information about unlabeled data to estimate labels of the unlabeled data for this condition. This work presents a new transductive learning method called two-way Markov random walk(TMRW) algorithm. The algorithm uses information about labeled and unlabeled data to predict the labels of the unlabeled data by taking random walks between the labeled and unlabeled data where data points are viewed as nodes of a graph. The labeled points correlate to unlabeled points and vice versa according to a transition probability matrix. We can get the predicted labels of unlabeled samples by combining the results of the two-way walks. Finally, ensemble learning is combined with transductive learning, and Adboost.MH is taken as the study framework to improve the performance of TMRW, which is the basic learner. Experiments show that this algorithm can predict labels of unlabeled data well. 展开更多
关键词 CLASSIFICATION transductive learning two-way Markov random walk (TMRW) Adboost.MH
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部