期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于异常检测的标签噪声过滤框架 被引量:1
1
作者 许茂龙 姜高霞 王文剑 《计算机科学》 CSCD 北大核心 2024年第2期87-99,共13页
噪声是影响机器学习模型可靠性的重要因素,而标签噪声相比特征噪声对模型训练更具决定性的影响。噪声过滤是处理标签噪声的一种有效方法,它不需要估计噪声率,也不需要依赖任何损失函数,然而目前大多数标签噪声过滤算法都会面临过度清洗... 噪声是影响机器学习模型可靠性的重要因素,而标签噪声相比特征噪声对模型训练更具决定性的影响。噪声过滤是处理标签噪声的一种有效方法,它不需要估计噪声率,也不需要依赖任何损失函数,然而目前大多数标签噪声过滤算法都会面临过度清洗问题。针对此问题,文中提出了基于异常检测的标签噪声过滤框架,并在此框架下给出了一种自适应近邻聚类的标签噪声过滤算法AdNN(Label Noise Filtering via Adaptive Nearest Neighbor Clustering)。该算法分别考虑分类问题中的每一个类别,把标签噪声检测问题转化成离群点检测问题,识别出每一个类别的离群点,然后根据相对密度去除离群点中的非噪声样本,得到噪声备选集,最后通过噪声因子对噪声备选集中的离群点进行噪声识别和过滤。实验结果表明,在合成数据集和公开数据集上,所提噪声过滤方法可以减轻过度清洗现象,同时能够得到很好的噪声过滤效果和分类预测性能。 展开更多
关键词 标签噪声过滤 离群点检测 自适应k近邻 相对密度 噪声因子
下载PDF
近邻感知的标签噪声过滤算法 被引量:8
2
作者 姜高霞 樊瑞宣 王文剑 《模式识别与人工智能》 EI CSCD 北大核心 2020年第6期518-529,共12页
基于k近邻的标签噪声过滤对近邻参数k的选取较敏感.针对此问题,文中提出近邻感知的标签噪声过滤算法,可有效解决二分类数据集的类内标签噪声的问题.算法分开考虑正类样本和负类样本,使分类问题中的标签噪声检测问题转化为两个单类别数... 基于k近邻的标签噪声过滤对近邻参数k的选取较敏感.针对此问题,文中提出近邻感知的标签噪声过滤算法,可有效解决二分类数据集的类内标签噪声的问题.算法分开考虑正类样本和负类样本,使分类问题中的标签噪声检测问题转化为两个单类别数据的离群点检测问题.首先通过近邻感知策略自动确定每个样本的个性化近邻参数,避免近邻参数敏感的问题.然后根据噪声因子将样本分为核心样本与非核心样本,并把非核心样本作为标签噪声候选集.最后结合候选样本的近邻标签信息,进行噪声的识别与过滤.实验表明,文中方法的噪声过滤效果和分类预测性能均较优. 展开更多
关键词 标签噪声过滤 近邻感知 个性化k近邻 离群点检测 噪声因子
下载PDF
基于四部图的协同过滤推荐算法比较研究
3
作者 牟斌皓 张智恒 +1 位作者 张林 闵帆 《计算机科学与探索》 CSCD 北大核心 2017年第6期875-886,共12页
推荐系统通常利用商品属性、用户信息以及用户对商品的已有评分来获取用户或者商品之间的相似度,进而预测未知评分。构造了关于这些信息的四部图,然后根据图中不同部分的组合获得了10类推荐算法,并比较了它们的时间复杂度。前两类算法... 推荐系统通常利用商品属性、用户信息以及用户对商品的已有评分来获取用户或者商品之间的相似度,进而预测未知评分。构造了关于这些信息的四部图,然后根据图中不同部分的组合获得了10类推荐算法,并比较了它们的时间复杂度。前两类算法基于用户与商品之间的关系,为经典的协同过滤算法。中间4类算法以用户或商品为中心,利用相应的标签信息进行相似度的计算并预测评分。后4类算法为中间4类算法的部分拓展,进一步考虑了评分信息。以MAE(mean absolute error)和RMSE(root-mean-square error)为评价指标,在两个Movie Lens数据集上的测试结果表明,商品之间的相似度比用户之间的相似度更可靠,商品标签也比用户标签更有用,而且某些信息的简单线性组合可以提高推荐质量。 展开更多
关键词 推荐系统 协同过滤 四部图 协同过滤标签
下载PDF
基于社会标注的Web服务语义自动浮现方法 被引量:8
4
作者 宁达 何克清 +3 位作者 彭蓉 冯在文 刘建晓 李征 《计算机学报》 EI CSCD 北大核心 2011年第12期2414-2426,共13页
社会化标注已经成为当前Web2.0时代流行的资源识别和管理方法.针对当前Web服务语义描述能力不足的问题,提出一种基于多维度的Web服务语义社会标注方法.在社会标注模型的指导下,利用涉众的广泛参与性,从推荐标签集、候选标签集以及自由... 社会化标注已经成为当前Web2.0时代流行的资源识别和管理方法.针对当前Web服务语义描述能力不足的问题,提出一种基于多维度的Web服务语义社会标注方法.在社会标注模型的指导下,利用涉众的广泛参与性,从推荐标签集、候选标签集以及自由标签集3种集合中选取若干个标签对服务进行社会标注;同时从服务的功能语义、非功能语义、目标语义、交互语义和补充语义5个维度建立服务语义社会标注框架,给出具体标注类型,将其分为机器标注和群体标注,利用群体智能,对机器标注的服务语义进行修正和完善,提高Web服务语义描述的完整性(即服务标签的语义覆盖率).进而作者提出了一种服务语义自动浮现方法,结合服务语义维度优先级,并根据标签出现频率以及服务属性类型优先级对标签进行排序,使得Web服务能够呈现大众用户认可的语义信息,提高Web服务语义描述的准确性(即服务标签的有效使用率),为后期准确发现Web服务奠定基础.最后通过实验分析,验证上述方法在提高服务语义描述能力方面的实用性和有效性. 展开更多
关键词 社会标注 WEB服务 标签过滤 标签排序 标签推荐 语义浮现
下载PDF
基于KNN-CatBoost的叶丝含水率预测
5
作者 袁维鑫 欧阳寅 +1 位作者 王积智 杨文超 《今日制造与升级》 2023年第12期40-42,共3页
针对烟草生产过程中叶丝干燥工序的含水率波动较大、人工干预强度大等问题,提出了一种基于机器学习的叶丝含水率预测模型。由于生产过程中存在数据失去时序对应关系和数采不完整,导致模型准确度较低,为解决此问题,基于k近邻思想进行标... 针对烟草生产过程中叶丝干燥工序的含水率波动较大、人工干预强度大等问题,提出了一种基于机器学习的叶丝含水率预测模型。由于生产过程中存在数据失去时序对应关系和数采不完整,导致模型准确度较低,为解决此问题,基于k近邻思想进行标签噪声过滤,剔除受到不可控因素影响的数据,然后利用CatBoost回归模型对叶丝干燥工序之前的叶丝膨胀工序入口含水率进行预测。实验结果表明,该模型能够有效地预测叶丝膨胀入口含水率,辅助提前修正后续工序相关参数,减少后续叶丝干燥工序的人为操作,可提高生产效率,降低品质波动。文中的方法具有一定的实用性和推广价值。 展开更多
关键词 机器学习 数值型标签噪声 标签噪声过滤
下载PDF
利用大众分类法构建本体研究 被引量:8
6
作者 吴江 《图书馆界》 2010年第1期26-29,共4页
本文通过介绍大众分类法构建本体的特点,探讨了标签的规范化处理,指出如何把没有等级关系的标签组织成具有等级关系的分类结构。创新地提出进行凝聚子群分析,将标签类聚成本体的网状分类结构的方法。
关键词 大众分类 本体 标签过滤 网状分类 凝聚子群分析
下载PDF
网络搜索引擎及在校园网的应用
7
作者 章翔 《铜陵学院学报》 2008年第6期126-128,共3页
文章从互联网的打造历程和搜索引擎的发展过程出发,论述了当今构建互联网、网页技术,以及这种技术在构建校园网引擎中的运用。
关键词 分词技术 安全字符过滤 html标签过滤 网页排名 采集权数
下载PDF
基于知识推荐的校园百科平台研究 被引量:1
8
作者 任敏 许玲 +1 位作者 王峰 吴超 《中国科学技术大学学报》 CAS CSCD 北大核心 2020年第8期1072-1076,共5页
2018年中国科学技术大学推出“校园百科”项目,旨在利用智能化技术实现校园文化积累与推广的新途径.“校园百科”的推出是以建设校园文化积累的知识库和校园文化分享平台为目的,用于鼓励师生积极参与校园文化建设,并为师生提供文化信息... 2018年中国科学技术大学推出“校园百科”项目,旨在利用智能化技术实现校园文化积累与推广的新途径.“校园百科”的推出是以建设校园文化积累的知识库和校园文化分享平台为目的,用于鼓励师生积极参与校园文化建设,并为师生提供文化信息智能化检索和个性推荐的服务.为此以中国科学技术大学校园百科建设为背景,重点介绍了校园百科平台建设中所涉及的关键技术(层次多标签分类、智能搜索和协同过滤标签推荐),并展示了校园百科平台的设计架构和主要功能,最后简要介绍了我校校园百科的使用评估. 展开更多
关键词 校园百科 层次多标签分类 全文检索 协同过滤标签推荐
下载PDF
A microblog recommendation algorithm based on social tagging and a temporal interest evolution model 被引量:2
9
作者 Zhen-ming YUAN Chi HUANG +2 位作者 Xiao-yan SUN Xing-xing LI Dong-rong XU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第7期532-540,共9页
Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal... Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred. 展开更多
关键词 Recommender system Collaborative filtering Social tagging Interest evolution model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部