期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于扩张卷积神经网络的异常检测模型
1
作者 高治军 曹浩东 韩忠华 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第4期738-744,共7页
目的提出一种基于DCNN-MiLSTM的异常检测模型,解决传统的网络异常检测模型难以处理具有时序特征网络流量数据的问题。方法对原始流量数据的时间标签进行重定义,利用扩张卷积神经网络对整体特征进行提取,同时引入Mogrifier LSTM网络,对... 目的提出一种基于DCNN-MiLSTM的异常检测模型,解决传统的网络异常检测模型难以处理具有时序特征网络流量数据的问题。方法对原始流量数据的时间标签进行重定义,利用扩张卷积神经网络对整体特征进行提取,同时引入Mogrifier LSTM网络,对时序信息进行深层次挖掘。结果与其他异常检测模型相比,DCNN-MiLSTM模型的准确率达到99.12%,召回率为98.94%,F_(1)值为99.03%,各项指标均优于其他常见模型,提升了检测异常网络流量数据的能力。结论DCNN-MiLSTM模型可以更好地处理具有时序特征的流量,捕捉流量数据中的时间依赖关系和趋势,更有效地检测和识别出异常数据。 展开更多
关键词 网络异常检测 扩张卷积神经网络 标签重定义 时序特性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部