期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
标签移动场景下的防碰撞算法研究 被引量:2
1
作者 李辽 崔晓晖 李铭哲 《计算机应用研究》 CSCD 北大核心 2020年第6期1675-1678,共4页
针对目前一些已有标签防碰撞算法大多应用于标签固定场景,而在标签移动场景下表现不佳的问题,提出了一种标签移动场景下(tag moving scene,TMS)的防碰撞算法。该算法首先对移入标签和驻留标签进行区分,然后对标签数量进行预估,最后基于... 针对目前一些已有标签防碰撞算法大多应用于标签固定场景,而在标签移动场景下表现不佳的问题,提出了一种标签移动场景下(tag moving scene,TMS)的防碰撞算法。该算法首先对移入标签和驻留标签进行区分,然后对标签数量进行预估,最后基于标签预估值采用一种混合识别策略对标签进行识别。仿真实验结果显示,相较于其他算法,TMS算法在标签移动场景下可以有效降低标签识别时间,对RFID标签防碰撞算法的研究具有一定意义。 展开更多
关键词 射频识别 标签防碰撞 标签预估 标签识别时间
下载PDF
Unseen head pose prediction using dense multivariate label distribution 被引量:1
2
作者 Gao-li SANG Hu CHEN +1 位作者 Ge HUANG Qi-jun ZHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期516-526,共11页
Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previous... Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previously seen head poses). To predict head poses that are not seen in the training data, some regression-based methods have been proposed. However, they focus on estimating continuous head pose angles, and thus do not systematically evaluate the performance on predicting unseen head poses. In this paper, we use a dense multivariate label distribution(MLD) to represent the pose angle of a face image. By incorporating both seen and unseen pose angles into MLD, the head pose predictor can estimate unseen head poses with an accuracy comparable to that of estimating seen head poses. On the Pointing'04 database, the mean absolute errors of results for yaw and pitch are 4.01?and 2.13?, respectively. In addition, experiments on the CAS-PEAL and CMU Multi-PIE databases show that the proposed dense MLD-based head pose estimation method can obtain the state-of-the-art performance when compared to some existing methods. 展开更多
关键词 Head pose estimation Dense multivariate label distribution Sampling intervals Inconsistent labels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部