I study the response of a particle detector coupled to quantized massless complex scalar field in four dimensional Minkowski spacetime through nonlinear Lagrangian. I find that as in the real scalar field: the partic...I study the response of a particle detector coupled to quantized massless complex scalar field in four dimensional Minkowski spacetime through nonlinear Lagrangian. I find that as in the real scalar field: the particle detector will not respond when it is in inertial motion; If accelerated in its own frame reference, it does respond and feel the same temperature. But different from the real scalar field case, the detector's transition amplitude is concerned with particle-antiparticle creation, and the response of the detector is (1/α^2 + ε^2)/24π^2 times of that in real scalar field, with 1/α the accelerator of the detector and e the energy gap between the detector's two energy level. It is due to the nonlinear property of the coupling Lagrangian. Whether the total charge of the system constructed by the particle detector and vacuum is conserved is also considered and analyzed.展开更多
We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar fiel...We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar field. Our results show that the mass of the scalar field manifests itself in the spontaneous excitation rate of the static detector in a thermal bath (and in vacuum) in the form of a selection rule for transitions among states of the detector. However, this selection rule disappears for the accelerated ones, demonstrating that an accelerated detector does not necessarily behave the same as an inertial one in a thermal bath. We lind the imprint left by the mass is the appearance of a grey-body factor in the spontaneous excitation and de-excitation rates, which maintains the detailed balance condition between them and thus ensures a thermal equilibrium at the Unruh temperature the same as that of the massless case. We also analyze quantitatively the effect of the mass on the rate of change of the detector's energy and find that when the mass is very small, it only induces a small negative correction. However, when it is very large, it then exponentially damps the rate, thus essentially forbidding any transitions among states of the detector.展开更多
Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to infla...Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10947016
文摘I study the response of a particle detector coupled to quantized massless complex scalar field in four dimensional Minkowski spacetime through nonlinear Lagrangian. I find that as in the real scalar field: the particle detector will not respond when it is in inertial motion; If accelerated in its own frame reference, it does respond and feel the same temperature. But different from the real scalar field case, the detector's transition amplitude is concerned with particle-antiparticle creation, and the response of the detector is (1/α^2 + ε^2)/24π^2 times of that in real scalar field, with 1/α the accelerator of the detector and e the energy gap between the detector's two energy level. It is due to the nonlinear property of the coupling Lagrangian. Whether the total charge of the system constructed by the particle detector and vacuum is conserved is also considered and analyzed.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos. 11075083,10935013 and 11005013the Zhejiang Provincial Natural Science Foundation of China under Grant No. Z6100077+3 种基金the National Basic Research Program of China under Grant No. 2010CB832803the PCSIRT under Grant No. IRT0964the Research Foundation of Education Bureau of Hunan Province under Grant No. 10C0377Provincial Natural Science Foundation of China under Grant No. 11JJ700
文摘We study spontaneous excitation of both a static detector (modelled by a two-level atom) immersed in a thermal bath and a uniformly accelerated one in the Minkowski vacuum interacting with a real massive scalar field. Our results show that the mass of the scalar field manifests itself in the spontaneous excitation rate of the static detector in a thermal bath (and in vacuum) in the form of a selection rule for transitions among states of the detector. However, this selection rule disappears for the accelerated ones, demonstrating that an accelerated detector does not necessarily behave the same as an inertial one in a thermal bath. We lind the imprint left by the mass is the appearance of a grey-body factor in the spontaneous excitation and de-excitation rates, which maintains the detailed balance condition between them and thus ensures a thermal equilibrium at the Unruh temperature the same as that of the massless case. We also analyze quantitatively the effect of the mass on the rate of change of the detector's energy and find that when the mass is very small, it only induces a small negative correction. However, when it is very large, it then exponentially damps the rate, thus essentially forbidding any transitions among states of the detector.
基金supported by the Project of Undergraduates’Training Program for Innovation/VenturingCentral China Normal University(Grant No.B2014179)
文摘Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.