This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image c...This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image characteristics of text changes, the system can quickly and accurately segment image from complex background, finally the system extract different dimension and the feature of English and Arabia using digital projection transform coefficient method and to identify the corresponding number by BP neural network, solves the problem of automatic recognition of electric energy meter lead sealing.展开更多
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision makin...The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision making theory. The method defines the distance matrix and grey association matrix between all object types and unknown object. After solving the optimization problem of maximizing the standard deviations for all attributes, the weights of the attributes are obtained. Thus, the result of recognition for the unknown object is given by the grey association degree. This method avoids the subjectivity of selecting attributes weights. It is straightforward and can be performed on computer easily. The simulated example demonstrates the feasibility and effectiveness of the proposed method.展开更多
文摘This article puts forward an automatic recognition algorithm of electric energy meter lead seals: firstly, the image will be histogram equalization, smoothing, binaryzation pretreatment, then according to the image characteristics of text changes, the system can quickly and accurately segment image from complex background, finally the system extract different dimension and the feature of English and Arabia using digital projection transform coefficient method and to identify the corresponding number by BP neural network, solves the problem of automatic recognition of electric energy meter lead sealing.
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.
基金This project is supported by National Natural Science Foundation of China (10626029) Jiangxi Province Natural Science Foundation of China (0611082) Science and Technology Project of Jiangxi province educational department in China (GJJ08350)
文摘The interval numbers are used to types and observation of sensors, a new fusion represent the characteristic values of object method for multi-sensor object recognition is proposed from the viewpoint of decision making theory. The method defines the distance matrix and grey association matrix between all object types and unknown object. After solving the optimization problem of maximizing the standard deviations for all attributes, the weights of the attributes are obtained. Thus, the result of recognition for the unknown object is given by the grey association degree. This method avoids the subjectivity of selecting attributes weights. It is straightforward and can be performed on computer easily. The simulated example demonstrates the feasibility and effectiveness of the proposed method.