期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双流神经网络的煤矿井下人员步态识别方法
被引量:
7
1
作者
刘晓阳
刘金强
郑昊琳
《矿业科学学报》
CSCD
2021年第2期218-227,共10页
人脸、指纹和虹膜等生物识别方法在井下复杂环境限制下常常比较模糊,导致基于这些生物特征的煤矿井下人员身份识别率不高。本文在残差神经网络和栈式卷积自动编码器的基础上,提出了一种基于双流神经网络(TS-GAIT)的步态识别方法。主要...
人脸、指纹和虹膜等生物识别方法在井下复杂环境限制下常常比较模糊,导致基于这些生物特征的煤矿井下人员身份识别率不高。本文在残差神经网络和栈式卷积自动编码器的基础上,提出了一种基于双流神经网络(TS-GAIT)的步态识别方法。主要利用残差神经网络提取步态模式中包含时空信息的动态特征,利用栈式卷积自动编码器提取包含生理信息的静态特征,并采用一种新颖的特征融合方法实现动态特征和静态特征的融合表征。提取的特征对角度、衣着和携带条件具有鲁棒性。在CASIA-B步态数据集和采集的煤矿工人步态数据集(CM-GAIT)上对该方法进行实验评估。结果表明,采用该方法进行煤矿井下人员步态识别是有效可行的,与其他步态识别方法相比准确率有显著提高。
展开更多
关键词
煤矿井下人员
步态识别
栈式卷积自动编码器
残差神经网络
双流神经网络
下载PDF
职称材料
题名
基于双流神经网络的煤矿井下人员步态识别方法
被引量:
7
1
作者
刘晓阳
刘金强
郑昊琳
机构
中国矿业大学(北京)机电与信息工程学院
出处
《矿业科学学报》
CSCD
2021年第2期218-227,共10页
基金
国家重点研发计划(2016YFC0801800)
国家自然科学基金(51674269)
中央高校基本科研业务费专项资金(2020YJSJD11)。
文摘
人脸、指纹和虹膜等生物识别方法在井下复杂环境限制下常常比较模糊,导致基于这些生物特征的煤矿井下人员身份识别率不高。本文在残差神经网络和栈式卷积自动编码器的基础上,提出了一种基于双流神经网络(TS-GAIT)的步态识别方法。主要利用残差神经网络提取步态模式中包含时空信息的动态特征,利用栈式卷积自动编码器提取包含生理信息的静态特征,并采用一种新颖的特征融合方法实现动态特征和静态特征的融合表征。提取的特征对角度、衣着和携带条件具有鲁棒性。在CASIA-B步态数据集和采集的煤矿工人步态数据集(CM-GAIT)上对该方法进行实验评估。结果表明,采用该方法进行煤矿井下人员步态识别是有效可行的,与其他步态识别方法相比准确率有显著提高。
关键词
煤矿井下人员
步态识别
栈式卷积自动编码器
残差神经网络
双流神经网络
Keywords
underground coal mine personnel
gait recognition
stacked convolutional autoencoder
residual neural network
Two-Stream neural network
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双流神经网络的煤矿井下人员步态识别方法
刘晓阳
刘金强
郑昊琳
《矿业科学学报》
CSCD
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部