成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet...成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet基线校正3种光谱预处理方法进行优化;之后采用改进的栈式稀疏自编码器(Stacked Sparse Autoencoder,SSAE)模型对预处理之后的拉曼光谱进行稀疏特征提取,并结合全连接层进行回归预测;最后根据均方根误差(Root Mean Square Error,RMSE)和决定系数(R^(2))两项评价指标,与偏最小二乘回归(Partial Least Square Regression,PLSR)、最小二乘支持向量回归(Least Square Support Vector Machine,LSSVR)以及SSAE 3种模型进行对比。结果表明:改进的SSAE-FC模型表现出更优的预测精度和稳定性,92#汽油-3#航煤混油测试集的R^(2)和RMSEC指标分别为0.9952和0.8932,3#航煤-0#车柴混油测试集的R^(2)和RMSEC指标分别为0.9837和1.1967,且学习得到的稀疏特征的可解释性强。展开更多
协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深...协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深度学习模型能够深度挖掘内容隐藏信息的特性,将栈式降噪自编码器(SDAE)运用于基于内容的推荐模型中,并将其与基于标签的协同过滤算法结合在一起,提出DLCF(Deep Learning for Collaborative Filtering)算法.经过真实数据集的验证,DLCF算法能够很大程度上克服矩阵稀疏问题,在性能上优于传统推荐算法.展开更多
文摘成品油混合浓度的预测对成品油顺序输送过程中的安全监控、混油段分割具有重要的意义。本研究配制92#汽油-3#航煤以及3#航煤-0#车柴两组包含不同浓度的混合样品,并对其进行拉曼光谱采集;依次采用归一化、多元散射校正、BaselineWavelet基线校正3种光谱预处理方法进行优化;之后采用改进的栈式稀疏自编码器(Stacked Sparse Autoencoder,SSAE)模型对预处理之后的拉曼光谱进行稀疏特征提取,并结合全连接层进行回归预测;最后根据均方根误差(Root Mean Square Error,RMSE)和决定系数(R^(2))两项评价指标,与偏最小二乘回归(Partial Least Square Regression,PLSR)、最小二乘支持向量回归(Least Square Support Vector Machine,LSSVR)以及SSAE 3种模型进行对比。结果表明:改进的SSAE-FC模型表现出更优的预测精度和稳定性,92#汽油-3#航煤混油测试集的R^(2)和RMSEC指标分别为0.9952和0.8932,3#航煤-0#车柴混油测试集的R^(2)和RMSEC指标分别为0.9837和1.1967,且学习得到的稀疏特征的可解释性强。
文摘协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深度学习模型能够深度挖掘内容隐藏信息的特性,将栈式降噪自编码器(SDAE)运用于基于内容的推荐模型中,并将其与基于标签的协同过滤算法结合在一起,提出DLCF(Deep Learning for Collaborative Filtering)算法.经过真实数据集的验证,DLCF算法能够很大程度上克服矩阵稀疏问题,在性能上优于传统推荐算法.