期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
栈式降噪自编码器的标签协同过滤推荐算法 被引量:19
1
作者 霍欢 郑德原 +3 位作者 高丽萍 杨沪沪 刘亮 张薇 《小型微型计算机系统》 CSCD 北大核心 2018年第1期7-11,共5页
协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深... 协同过滤推荐和基于内容的推荐是目前应用于推荐系统中的两种主流手段.传统的协同过滤模型存在着矩阵稀疏问题,基于内容的推荐又不能自动抽取深层特征,且两种推荐手段很难直接融合在一起,无法共同提升推荐系统的性能表现.充分利用了深度学习模型能够深度挖掘内容隐藏信息的特性,将栈式降噪自编码器(SDAE)运用于基于内容的推荐模型中,并将其与基于标签的协同过滤算法结合在一起,提出DLCF(Deep Learning for Collaborative Filtering)算法.经过真实数据集的验证,DLCF算法能够很大程度上克服矩阵稀疏问题,在性能上优于传统推荐算法. 展开更多
关键词 推荐系统 协同过滤 深度学习 栈式降噪自编码器
下载PDF
基于栈式降噪自编码器的协同过滤算法 被引量:10
2
作者 周洋 陈家琪 《计算机应用研究》 CSCD 北大核心 2017年第8期2336-2339,共4页
针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA... 针对协同过滤推荐准确性的现状进行了研究,提出一种基于栈式降噪自编码器的协同过滤算法。栈式降噪自编码器是一种典型的深度学习网络模型,具有强大的特征提取能力。用户对项目的评分作为输入,训练网络,学习出项目的隐含特征编码,用PCA对项目属性降维并计算属性相似性,结合隐性编码计算的相似性作为最终结果,根据最终的项目相似性产生top-N推荐列表。Movie Lens数据集的实验表明,该算法能够有效提升推荐结果的召回率,一定程度上解决了评分矩阵稀疏与项目之间没有共同用户评分就不能计算相似性的问题。 展开更多
关键词 推荐系统 协同过滤 深度学习 栈式降噪自编码器
下载PDF
基于改进栈式降噪自编码器的控制系统故障诊断 被引量:2
3
作者 罗毅 赵聪杰 武博翔 《计算机应用与软件》 北大核心 2022年第7期89-94,127,共7页
为了提高控制系统故障检测和分类能力,提出核主成分分析(KPCA)与栈式降噪自编码(SDAE)神经网络相结合的控制系统故障诊断方法。利用KPCA对故障数据进行非线性数据处理,再把数据输入到SDAE神经网络中进行无监督训练,获取最优网络参数,以S... 为了提高控制系统故障检测和分类能力,提出核主成分分析(KPCA)与栈式降噪自编码(SDAE)神经网络相结合的控制系统故障诊断方法。利用KPCA对故障数据进行非线性数据处理,再把数据输入到SDAE神经网络中进行无监督训练,获取最优网络参数,以Softmax分类层作为输出层实现故障分类。该模型有效解决了控制系统中慢漂移故障特征不明显导致模型故障诊断准确率低的问题,提高了故障诊断精度。通过TE系统实验,验证了该算法的有效性和卓越性。 展开更多
关键词 控制系统 故障诊断 栈式降噪自编码器 核主成分分析 Softmax分类器
下载PDF
基于栈式降噪自编码器故障诊断方法研究 被引量:1
4
作者 罗毅 赵聪杰 武博翔 《科技与创新》 2020年第4期73-74,77,共3页
为了提高复杂工业系统故障诊断的正确性,提出将核主成分分析(KPCA)和栈式降噪自编码(SDAE)相结合的模型。为了进一步提高KPCA-SDAE模型的准确率及收敛速度,对模型超参数激活函数、优化算法进行了研究。通过比较不同超参数函数对模型的... 为了提高复杂工业系统故障诊断的正确性,提出将核主成分分析(KPCA)和栈式降噪自编码(SDAE)相结合的模型。为了进一步提高KPCA-SDAE模型的准确率及收敛速度,对模型超参数激活函数、优化算法进行了研究。通过比较不同超参数函数对模型的故障诊断效果和程序运行时间的影响,选取出合适的KPCA-SDAE算法设置参数,并通过TE过程实验验证了合适的激活函数和优化算法能够有效地提高神经网络模型的准确性和收敛速度。 展开更多
关键词 复杂工业系统 故障诊断 栈式降噪自编码器 激活函数
下载PDF
基于栈式降噪自编码器的输变电设备状态数据清洗方法 被引量:58
5
作者 代杰杰 宋辉 +3 位作者 杨祎 陈玉峰 盛戈皞 江秀臣 《电力系统自动化》 EI CSCD 北大核心 2017年第12期224-230,共7页
针对当前输变电设备状态监测数据清洗过程繁琐,易造成信息丢失等问题,利用栈式降噪自编码器对"脏"数据的还原解析能力及异常状态特征提取能力,提出了一种基于栈式降噪自编码器的数据清洗方法。对设备正常工况及异常运行状态... 针对当前输变电设备状态监测数据清洗过程繁琐,易造成信息丢失等问题,利用栈式降噪自编码器对"脏"数据的还原解析能力及异常状态特征提取能力,提出了一种基于栈式降噪自编码器的数据清洗方法。对设备正常工况及异常运行状态数据分别利用栈式降噪自编码器进行训练学习,获取损失函数向量,形成奇异点、缺失数据修复模型和设备异常运行状态数据降噪模型。通过核密度估计确定训练样本损失函数上限和容限时窗,根据测试数据重构误差和异常数据时长与损失函数上限和容限时窗间的关系,对"脏"数据进行分类处理。对某变压器油色谱中总烃含量及某导线温度数据进行清洗,结果表明所提方法能有效辨识奇异点、缺失信息及异常运行状态数据,并对奇异点、缺失值进行修复重构。在设备异常运行时刻,可以有效过滤干扰数据。 展开更多
关键词 输变电设备 状态数据 数据清洗 栈式降噪自编码器 特征提取
下载PDF
基于模糊函数等高线与栈式降噪自编码器的雷达辐射源信号识别 被引量:11
6
作者 普运伟 郭江 +1 位作者 刘涛涛 吴海潇 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第1期207-216,共10页
针对当前复杂体制雷达辐射源信号识别方法抗噪性能差、识别率低等问题,提出一种基于模糊函数等高线与栈式降噪自编码器的新识别方法。首先对辐射源信号的模糊函数进行高斯滤波并根据线性插值计算等高线,然后采用主成分分析方法降低其特... 针对当前复杂体制雷达辐射源信号识别方法抗噪性能差、识别率低等问题,提出一种基于模糊函数等高线与栈式降噪自编码器的新识别方法。首先对辐射源信号的模糊函数进行高斯滤波并根据线性插值计算等高线,然后采用主成分分析方法降低其特征维度,保留主要模糊能量信息,最后构建深度学习栈式降噪自编码器,学习并提取等高线深层、泛在的特征,并通过Softmax分类器进行分类识别。实验结果表明,该方法在信噪比为0 dB时对6类典型雷达信号的整体平均识别率均保持在99.83%以上,即便是在-6 dB环境中,识别率也可达到83.67%,验证了所提方法在极低信噪比条件下良好的性能和可行性。 展开更多
关键词 雷达辐射源信号 模糊函数 信号识别 深度学习 栈式降噪自编码器
下载PDF
栈式降噪自编码器在辐射源信号识别中的应用 被引量:2
7
作者 叶文强 俞志富 +1 位作者 张奎 王虎帮 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2019年第6期47-53,共7页
针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处... 针对传统辐射源信号识别方法在低信噪比条件下提取特征困难且识别率低的问题,提出了一种基于短时傅里叶(STFT)变换和栈式降噪自编码器(sDAE)的识别系统。首先对雷达辐射源信号进行短时傅里叶变化,然后对时频图像进行一系列预处理,将处理后的图像输入到栈式降噪自编码器中,将提取的特征输入到softmax分类器中,完成分类识别。通过仿真表明:该系统在SNR=-10 dB的时候,识别率能够达到80%以上,在低信噪比的情况下,识别效果明显优于传统识别方法。 展开更多
关键词 雷达辐射源 短时傅里叶 图像预处理 栈式降噪自编码器 分类器
下载PDF
基于栈式降噪自编码器的发酵过程回归建模
8
作者 岳向阳 赵忠盖 刘飞 《计算机测量与控制》 2021年第7期136-139,155,共5页
精确有效的发酵过程模型不仅能够定量揭示过程信息间的关联,实现对难以实时监测变量的预测,而且是进一步控制和优化的前提;基于数据驱动的发酵过程建模方法得到了广泛研究与应用,然而其仅考虑发酵过程的非线性特征和数据具有多采样率的... 精确有效的发酵过程模型不仅能够定量揭示过程信息间的关联,实现对难以实时监测变量的预测,而且是进一步控制和优化的前提;基于数据驱动的发酵过程建模方法得到了广泛研究与应用,然而其仅考虑发酵过程的非线性特征和数据具有多采样率的特点,忽略了过程数据中测量噪声对模型的影响;为此,提出基于栈式降噪自编码器的发酵过程回归建模方法,该方法不仅具有较强的非线性拟合能力,半监督的学习策略也能够充分挖掘发酵过程中的所有数据信息,同时可以从含噪声的过程数据中提取出鲁棒性的特征,使模型具有噪声适应性;通过青霉素仿真对比实验结果表明,该模型的预测性能更好。 展开更多
关键词 发酵过程 建模 栈式降噪自编码器 半监督学习
下载PDF
基于栈式降噪自编码器的GIS绝缘缺陷识别研究 被引量:1
9
作者 张金水 蒋伟 潘伟杰 《电气自动化》 2021年第4期81-83,118,共4页
气体绝缘开关柜(GIS)作为电力系统中重要的设备之一,其可靠性与电网的安全稳定运行密切相关。考虑到传统方法多是依靠经验人为地进行缺陷识别,不能准确地提取局部放电信号的特征并进行分类,提出了一种基于栈式降噪自编码网络的局部放电... 气体绝缘开关柜(GIS)作为电力系统中重要的设备之一,其可靠性与电网的安全稳定运行密切相关。考虑到传统方法多是依靠经验人为地进行缺陷识别,不能准确地提取局部放电信号的特征并进行分类,提出了一种基于栈式降噪自编码网络的局部放电信号特征提取方法。通过网络自适应的方法提取局部放电相位分布谱图内在的特征向量,并以此表征不同放电类型对网络进行训练及测试,实现对GIS缺陷的分类识别。结果表明,可以有效地提取放电信号的特征,并准确地识别GIS缺陷类别。 展开更多
关键词 气体绝缘开关柜 局部放电 局部放电相位分布谱图 识别 特征提取 栈式降噪自编码器
下载PDF
基于栈式降噪编码器的跨语言多标签情感分类
10
作者 唐诗琪 周瑞平 +2 位作者 谢仕斌 刘梦赤 肖文 《计算机与现代化》 2023年第11期6-12,共7页
多标签情感分类任务旨在处理一个实例可能与多个情感标签关联的问题。现有的大多数多标签情感分类模型都是基于完整的数据设计,模型性能和语义易受到数据本身存在的不完全性影响。针对此问题本文提出一种基于栈式降噪自编码器的跨语言... 多标签情感分类任务旨在处理一个实例可能与多个情感标签关联的问题。现有的大多数多标签情感分类模型都是基于完整的数据设计,模型性能和语义易受到数据本身存在的不完全性影响。针对此问题本文提出一种基于栈式降噪自编码器的跨语言多标签情感分类模型,引入标签感知损失函数弥补训练带来的损失。该模型通过栈式降噪自编码器对词向量去噪以构建原始数据的低维特征,降低特征空间的噪声干扰,为下游任务提供有效特征表示。在SemEval2018的3种语言数据集(即英语、阿拉伯语和西班牙语)多标签情感分类实验中,该模型在测试集上的micro_F1、macro_F1、jaccard这3个指标均得到提升,其中macro_F1分别提升了约0.82、1.45和1.83个百分点。 展开更多
关键词 多标签分类 情感分类 不完全数据 BERT 栈式降噪自编码器
下载PDF
基于EEMD-SE和栈式降噪自编码网络的局部放电模式识别 被引量:4
11
作者 张金水 蒋伟 薛乃凡 《计算机应用与软件》 北大核心 2021年第9期34-38,132,共6页
由于变电站环境复杂,利用传统的特征统计方法不能准确地提取局部放电(PD)信号的特征及对其识别分类。对此,提出一种基于集合经验模态分解(EEMD)和样本熵(SE)的局部放电信号特征提取方法。利用EEMD算法对局部放电信号进行时频分析;计算E... 由于变电站环境复杂,利用传统的特征统计方法不能准确地提取局部放电(PD)信号的特征及对其识别分类。对此,提出一种基于集合经验模态分解(EEMD)和样本熵(SE)的局部放电信号特征提取方法。利用EEMD算法对局部放电信号进行时频分析;计算EEMD分解得到的固有模态函数(IMF)的样本熵,并将其作为特征向量表征不同放电类型;采用栈式降噪自编码网络(SDAE)对放电类型进行分类识别。通过对四类局部放电故障进行特征提取和模式识别,对比实验结果表明,该方法能有效地提取放电信号的特征,并较准确地识别各类放电类型。 展开更多
关键词 局部放电 集合经验模态分解 样本熵 栈式降噪自编码器 特征提取 识别
下载PDF
结合栈式自编码及长短时记忆的入侵检测研究 被引量:2
12
作者 林硕 安磊 +2 位作者 高治军 单丹 尚文利 《系统仿真学报》 CAS CSCD 北大核心 2021年第6期1288-1296,共9页
针对网络攻击越来越隐蔽,且具有智能化和复杂化的特点,浅层的机器学习已经无法及时应对,提出了一种基于SDAE(Stacked Denoising Autoencoder)和LSTM(Long Short-Term Memory)相结合的深度学习方法。通过堆叠深层的SDAE智能逐层抽取网络... 针对网络攻击越来越隐蔽,且具有智能化和复杂化的特点,浅层的机器学习已经无法及时应对,提出了一种基于SDAE(Stacked Denoising Autoencoder)和LSTM(Long Short-Term Memory)相结合的深度学习方法。通过堆叠深层的SDAE智能逐层抽取网络数据的分布规则,结合各个编码层的系数惩罚和重构误差对高维数据进行多样性异常特征提取。结合LSTM的记忆功能和强大的序列数据学习能力进行学习分类。在UNSW-NB15数据集上进行了实验,通过调整时间步长进行分析,实验结果表明,该模型具有检测准确率高、误报率低的优点。 展开更多
关键词 深度学习 入侵检测技术 栈式降噪自编码器 长短时记忆网络
下载PDF
混合深层协同过滤的SVD++推荐方法 被引量:2
13
作者 汪赫瑜 夏航 任建华 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2020年第6期524-532,共9页
为抑制辅助信息在推荐模型中各个方向的扰动并考虑使用文本信息提取项目特征,提出一种矩阵分解模型,混合深层协同过滤的SVD++推荐方法.该模型将附加栈式降噪自编码器和堆叠的收缩降噪自编码器与辅助信息相结合,分别提取用户和项目的潜... 为抑制辅助信息在推荐模型中各个方向的扰动并考虑使用文本信息提取项目特征,提出一种矩阵分解模型,混合深层协同过滤的SVD++推荐方法.该模型将附加栈式降噪自编码器和堆叠的收缩降噪自编码器与辅助信息相结合,分别提取用户和项目的潜在特征表示,并在提取项目特征表示时加入预训练的词嵌入模型考虑词语之间的语义关系.在数据集MovieLens-1M与MovieLens-10M的实验.结果表明:相比于传统算法、深度学习算法以及所提模型的变体,所提模型更有效地提取潜在特征表示并提高预测评分精度. 展开更多
关键词 推荐系统 深度学习 附加栈式降噪自编码器 收缩自编码器 矩阵分解
下载PDF
基于深度学习和集成学习的辐射源信号识别 被引量:33
14
作者 黄颖坤 金炜东 +1 位作者 余志斌 吴昀璞 《系统工程与电子技术》 EI CSCD 北大核心 2018年第11期2420-2425,共6页
随着电磁环境的日益复杂和雷达辐射源信号类型的逐渐增多,如何有效地识别雷达信号类型成为一个重要的问题。为解决这个问题,提出了一种基于深度学习和集成学习的辐射源信号识别框架。该框架由特征提取和分类器设计两部分组成。第一部分... 随着电磁环境的日益复杂和雷达辐射源信号类型的逐渐增多,如何有效地识别雷达信号类型成为一个重要的问题。为解决这个问题,提出了一种基于深度学习和集成学习的辐射源信号识别框架。该框架由特征提取和分类器设计两部分组成。第一部分,将雷达信号变换到时频域,利用栈式降噪自编码模型学习时频图像的特征。深度模型的训练采用无监督预学习和有监督微调相结合。第二部分,构造一个集成不同支持向量机分类器的模型对雷达信号进行识别。利用8种不同的辐射源信号验证了提出模型的有效性,结果表明结合这两种机器学习的方法有助于提高辐射源信号的识别正确率。 展开更多
关键词 雷达辐射源信号识别 深度学习 集成学习 栈式降噪自编码器 多分类器组合
下载PDF
面向网络入侵检测的GAN-SDAE-RF模型研究 被引量:14
15
作者 安磊 韩忠华 +1 位作者 林硕 尚文利 《计算机工程与应用》 CSCD 北大核心 2021年第21期155-164,共10页
针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的... 针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的问题,引入生成式对抗网络(GAN)和栈式降噪自编码器(SDAE)对随机森林算法(RF)进行改进。将罕见攻击类数据集输入GAN神经网络中,生成新的攻击类样本,改善网络入侵数据在样本集中不均衡分布的情况,通过堆叠深层的SDAE逐层抽取网络数据的分布规则,并结合各个编码层的系数惩罚和重构误差,来确定高维数据中与入侵行为相关的特征,基于降维后的特征数据构建森林决策树。采用UNSW-NB15数据集的实验结果表明,与SVM、KNN、CNN、LSTM、DBN方法相比,GAN-SDAE-RF整体检测准确率平均提高了9.39%、误报率和漏报率平均降低了9%和15.24%以及在少数类Analysis、Shellcode、Backdoor、Worms上检测率分别提高了26.8%、27.98%、27.85%、39.97%。 展开更多
关键词 深度学习 生成对抗网络 栈式降噪自编码器 随机森林算法
下载PDF
基于BERT的不完全数据情感分类 被引量:9
16
作者 罗俊 陈黎飞 《计算机应用》 CSCD 北大核心 2021年第1期139-144,共6页
不完全数据,如社交平台的互动信息、互联网电影资料库中的影评内容,广泛存在于现实生活中。而现有情感分类模型大多建立在完整的数据集上,没有考虑不完整数据对分类性能的影响。针对上述问题提出基于BERT的栈式降噪神经网络模型,用于面... 不完全数据,如社交平台的互动信息、互联网电影资料库中的影评内容,广泛存在于现实生活中。而现有情感分类模型大多建立在完整的数据集上,没有考虑不完整数据对分类性能的影响。针对上述问题提出基于BERT的栈式降噪神经网络模型,用于面向不完全数据的情感分类。该模型由栈式降噪自编码器(SDAE)和BERT两部分组成。首先将经词嵌入处理的不完全数据输入到SDAE中进行去噪训练,以提取深层特征来重构缺失词和错误词的特征表示;接着将所得输出传入BERT预训练模型中进行精化以进一步改进词的特征向量表示。在两个常用的情感数据集上的实验结果表明,所提方法在不完全数据情感分类中的F1值和准确率分别提高了约6%和5%,验证了所提模型的有效性。 展开更多
关键词 不完全数据 情感分类 BERT 栈式降噪自编码器 预训练模型
下载PDF
基于深度学习的短时交通流预测 被引量:3
17
作者 李莹 李晓霞 《公路工程》 2021年第3期314-319,共6页
精确的交通流预测是智能运输系统的重要技术支撑,以实际交通流数据为背景,提出了一种新型的基于深度学习的交通流预测模型。将若干个降噪自编码器(DAE)进行堆叠,组成栈式降噪自编码器模型(SDAE),完成了深度学习框架的构建。进一步通过... 精确的交通流预测是智能运输系统的重要技术支撑,以实际交通流数据为背景,提出了一种新型的基于深度学习的交通流预测模型。将若干个降噪自编码器(DAE)进行堆叠,组成栈式降噪自编码器模型(SDAE),完成了深度学习框架的构建。进一步通过在顶层结构中增加标准预测模型,实现了基于深度学习的预测模型的搭建。结合实际交通流数据,开展了多个预测模型的实验对比。结果表明,考虑多维时空因素的SDAE预测精度更高,证明了模型的优越性。 展开更多
关键词 智能运输系统 栈式降噪自编码器 交通流预测 深度学习
下载PDF
基于SDAE与CART联合智能算法的通信网络用户满意度分析方法 被引量:1
18
作者 李露 于忠义 李福昌 《信息通信技术》 2020年第2期12-18,共7页
论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通... 论文提出一种基于栈式降噪自编码器(Stacked Denoising Autoencoder,SDAE)与分类和回归决策树(Classification and Regression Tree,CART)的移动互联网满意度预测方法,此模型能挖掘出用户的满意度与用户的特征和网络特征的关联规则,通过这种规则能更精准及时地预测到用户满意度的变化,以便运营商针对这种变化提前作出决策。论文所提方法能够挖掘特征间的深层关系,通过SDAE编码样本可以获得影响用户体验的隐含特征,及时发现用户对于网络贬损的真正痛点,为运营商网络建设和运行维护部门制定提升用户的网络感知策略提供依据,从而提升用户体验。 展开更多
关键词 栈式降噪自编码器 分类和回归决策树 人工智能 移动互联网 满意度
下载PDF
基于工业数据的溶剂脱沥青装置多工况建模 被引量:1
19
作者 陈鹏宇 隆建 +1 位作者 杨明磊 钱锋 《控制工程》 CSCD 北大核心 2020年第11期2002-2009,共8页
作为重油处理的重要单元之一,溶剂脱沥青装置由于进料成分复杂,萃取过程中两相平衡数据过于庞大且难以获取,传统通过机理的建模方法较难适用。提出一种SDAE-FCM工况分类法,借助于深度神经网络的自学习功能提取高维输入特征的同时降低输... 作为重油处理的重要单元之一,溶剂脱沥青装置由于进料成分复杂,萃取过程中两相平衡数据过于庞大且难以获取,传统通过机理的建模方法较难适用。提出一种SDAE-FCM工况分类法,借助于深度神经网络的自学习功能提取高维输入特征的同时降低输入维度,减少噪声对后续模型的影响;结合通过隶属度函数定义的模糊C均值聚类(FCM)算法对工况进行划分,缓解了由于进料性质波动和操作条件改变带来的工况漂移问题,较全局分析更具优势;采用基于树模型的集成学习方法针对不同工况分别建立产品收率和性质的模型。现场工业数据验证结果表明,该方法建立的模型,在预测脱沥青油(DAO)收率、残炭、硫含量、四组分等方面有较好的性能,可为实际装置的优化提供指导。 展开更多
关键词 炼油过程 溶剂脱沥青 栈式降噪自编码器 模糊C均值聚类 集成学习
下载PDF
一种基于深度学习的精准商品推荐方法 被引量:1
20
作者 周思鸣 毕忠勤 李永斌 《上海电力大学学报》 CAS 2021年第5期491-495,共5页
随着互联网技术的飞速发展,互联网用户在畅游网络的同时也面临着信息过载的问题,而个性化推荐技术则成为了解决信息过载问题的有力工具。为了对用户提供更精准的商品推荐服务,提出了一个基于栈式降噪自编码器(SDAE)和贝叶斯个性化排序(B... 随着互联网技术的飞速发展,互联网用户在畅游网络的同时也面临着信息过载的问题,而个性化推荐技术则成为了解决信息过载问题的有力工具。为了对用户提供更精准的商品推荐服务,提出了一个基于栈式降噪自编码器(SDAE)和贝叶斯个性化排序(BPR)相结合的深度神经网络模型SDAE BPR。首先,使用SDAE把商品评分数据作为输入,编码后得到隐特征。其次,用BPR的方法学习对应商品的隐特征向量。该模型能够避免矩阵稀疏性的影响,因此达到了更精准推荐商品的效果。最后,分别使用Movielens 20 M和Movielens 1 M数据集,对SDAE BPR模型与传统基于商品的协同过滤模型(IB CF)、传统基于用户的协同过滤模型(UB CF)做了对比,结果发现SDAE BPR具有更高的准确度。 展开更多
关键词 推荐系统 栈式降噪自编码器 贝叶斯个性化排序 深度学习
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部