期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于贝叶斯网络的高速公路交通事故严重程度预测及致因分析
被引量:
4
1
作者
成卫
马铭炜
张小龙
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第7期87-95,共9页
为了深入研究高速公路交通安全,剖析高速公路交通事故的发生机理以及各类因素对高速公路交通事故严重程度的影响,收集曲靖市境内沪昆高速段2017—2019年的1 939起交通事故进行研究。以事故严重程度为因变量,筛选出人、车、路、环境4个...
为了深入研究高速公路交通安全,剖析高速公路交通事故的发生机理以及各类因素对高速公路交通事故严重程度的影响,收集曲靖市境内沪昆高速段2017—2019年的1 939起交通事故进行研究。以事故严重程度为因变量,筛选出人、车、路、环境4个大类下的与事故严重程度相关的19个影响因素为自变量,采用数据融合法基于树增广型贝叶斯网络构建事故严重程度预测模型,量化各因素间的影响关系,经特征筛选找出关键致因,并结合案例进行推理分析。结果表明:影响高速公路交通事故严重程度的关键致因依次为天气情况、视距情况、路面情况等。模型对高速公路事故严重程度预测准确率可达84.27%,高于传统贝叶斯方法,模型有效性验证良好。针对事故主要致因提出改进建议,可为交管部门提供准确事故信息辅助决策,加快事故响应速度,提高事故应急指挥能力。
展开更多
关键词
交通运输工程
高速公路
事故严重程度
树增广型贝叶斯网络
致因分析
下载PDF
职称材料
题名
基于贝叶斯网络的高速公路交通事故严重程度预测及致因分析
被引量:
4
1
作者
成卫
马铭炜
张小龙
机构
昆明理工大学交通工程学院
通号智慧城市研究设计院有限公司
出处
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第7期87-95,共9页
基金
国家自然科学基金面上项目(71771062)。
文摘
为了深入研究高速公路交通安全,剖析高速公路交通事故的发生机理以及各类因素对高速公路交通事故严重程度的影响,收集曲靖市境内沪昆高速段2017—2019年的1 939起交通事故进行研究。以事故严重程度为因变量,筛选出人、车、路、环境4个大类下的与事故严重程度相关的19个影响因素为自变量,采用数据融合法基于树增广型贝叶斯网络构建事故严重程度预测模型,量化各因素间的影响关系,经特征筛选找出关键致因,并结合案例进行推理分析。结果表明:影响高速公路交通事故严重程度的关键致因依次为天气情况、视距情况、路面情况等。模型对高速公路事故严重程度预测准确率可达84.27%,高于传统贝叶斯方法,模型有效性验证良好。针对事故主要致因提出改进建议,可为交管部门提供准确事故信息辅助决策,加快事故响应速度,提高事故应急指挥能力。
关键词
交通运输工程
高速公路
事故严重程度
树增广型贝叶斯网络
致因分析
Keywords
traffic and transportation engineering
freeway
accident severity
tree-enhanced Bayesian network
cause analysis
分类号
U491.31 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于贝叶斯网络的高速公路交通事故严重程度预测及致因分析
成卫
马铭炜
张小龙
《重庆交通大学学报(自然科学版)》
CAS
CSCD
北大核心
2023
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部