Coffee cultivation by using shade trees is simple of agroforestry, this system could get better ecosystem service and sustainable agricultural. The aims of this research are to study the possibility of some species of...Coffee cultivation by using shade trees is simple of agroforestry, this system could get better ecosystem service and sustainable agricultural. The aims of this research are to study the possibility of some species of industrial woods as shade trees of Coffea canephora. The research was conducted in Jember, Indonesia (45 m asl., D rainfall type according to Schmidt and Ferguson), and arranged in split plot design. The main plots were (A) coffee-T, grandis (3 m × 2.5 m ×12 m), (B) coffee-P, falcataria single row (2.5 m ×6 m), (C) coffee-P, falcataria double rows (3 m× 2.5 m × 12 m), (D) coffee-P, falcataria vat. Solomon (3 m× 2.5 m × 12 m), (E) coffee-M, azedarach (3 m ×5 m ×22.5 m), (F) coffee-H, macrophyllus (3 m ×5 m ×12.5 m), and (G) coffee-Leucaena sp. (3 m × 2.5 m) as control. The sub plots were coffee clones, i.e., BP 534, BP 409, BP 936, dan BP 939. Among those timber trees, Leucaena was planted as the alternative shade trees. The result showed that in comparison with control, all of coffee agroforestry system improved carbon sequestration. Total C-stock on (B) was highest, i.e., 1,007 percent to control while the lowest one was (A) 317.44% to control. During one year observation, litter weight of H. macrophyllus was heaviest followed by T. grandis. The lightest litter was obtained from M. azedarach. Based on its mineral contents, litters of T. grandis potentially supplied back nutrients that equaled to total Urea, SP-36, KC1, Dolomite, and Kieserite as much as 574.14 g; P. falcataria 287.57 g, P. falcataria var. Solomon 453.59 g, M. azedarach 450.84 g, H. macrophyllus 877.56 g, and Leucaena 445.12 g per tree per year. Because of heavily fallen leaves of M. azedarach during dry season and conversely too dense shading of H. macrophyllus, bean yield at 4 and 5 years old by using both species were consistently lower than that under T. grandis, P. falcataria and control. At those ages, effect of clone on cherry yield was still not consistent but there was a tendency that BP 939 was most productive, while BP 534 was the less. Its outturn was not influenced by agroforestry system but by clones. The agroforestry pattern influence physical bean characters, more dense of shading, more single bean and empty bean. That bean abnormality also genetically, on BP 939 percentage of round and empty bean was highest while on BP 936 was lowest. It was concluded that coffee agroforestry improve ecology service, but M. azedarach and H. macrophyllus were not appropriate to be used as coffee shade trees. P. falcataria is recommended as an alternative shade tree beside Leucaena sp.展开更多
文摘Coffee cultivation by using shade trees is simple of agroforestry, this system could get better ecosystem service and sustainable agricultural. The aims of this research are to study the possibility of some species of industrial woods as shade trees of Coffea canephora. The research was conducted in Jember, Indonesia (45 m asl., D rainfall type according to Schmidt and Ferguson), and arranged in split plot design. The main plots were (A) coffee-T, grandis (3 m × 2.5 m ×12 m), (B) coffee-P, falcataria single row (2.5 m ×6 m), (C) coffee-P, falcataria double rows (3 m× 2.5 m × 12 m), (D) coffee-P, falcataria vat. Solomon (3 m× 2.5 m × 12 m), (E) coffee-M, azedarach (3 m ×5 m ×22.5 m), (F) coffee-H, macrophyllus (3 m ×5 m ×12.5 m), and (G) coffee-Leucaena sp. (3 m × 2.5 m) as control. The sub plots were coffee clones, i.e., BP 534, BP 409, BP 936, dan BP 939. Among those timber trees, Leucaena was planted as the alternative shade trees. The result showed that in comparison with control, all of coffee agroforestry system improved carbon sequestration. Total C-stock on (B) was highest, i.e., 1,007 percent to control while the lowest one was (A) 317.44% to control. During one year observation, litter weight of H. macrophyllus was heaviest followed by T. grandis. The lightest litter was obtained from M. azedarach. Based on its mineral contents, litters of T. grandis potentially supplied back nutrients that equaled to total Urea, SP-36, KC1, Dolomite, and Kieserite as much as 574.14 g; P. falcataria 287.57 g, P. falcataria var. Solomon 453.59 g, M. azedarach 450.84 g, H. macrophyllus 877.56 g, and Leucaena 445.12 g per tree per year. Because of heavily fallen leaves of M. azedarach during dry season and conversely too dense shading of H. macrophyllus, bean yield at 4 and 5 years old by using both species were consistently lower than that under T. grandis, P. falcataria and control. At those ages, effect of clone on cherry yield was still not consistent but there was a tendency that BP 939 was most productive, while BP 534 was the less. Its outturn was not influenced by agroforestry system but by clones. The agroforestry pattern influence physical bean characters, more dense of shading, more single bean and empty bean. That bean abnormality also genetically, on BP 939 percentage of round and empty bean was highest while on BP 936 was lowest. It was concluded that coffee agroforestry improve ecology service, but M. azedarach and H. macrophyllus were not appropriate to be used as coffee shade trees. P. falcataria is recommended as an alternative shade tree beside Leucaena sp.