An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism...An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment.展开更多
We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sa...We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sampling were conducted in 3 sites of the hill range: Site 1 Pterocarpus dominated forest (PTF) (19°40'02.2'' N and 83°21'23.1'' E), Site 2 Mangifera dominated forest (MAF) (19°40'02.8'' N and 83°21'40.8'' E) and Site 3 Mixed forest (MIF) (19°36'47.1" N and 83°21'02.7'' E). A total of 28 families, 42 genera, 46 tree species, and 286 individual trees were recorded on an area of0.6 ha. Tree density varied between 470 and 49o individuals ha and average basal area between 3.16 and l0.04 m2 ha-1. Shannon Index (H') ranged from 2.34 to 4.53, Simpson's Index ranged from 0.07 to o.09, and equitability Index ranged from 0.7 to 1.34. The number of individuals was highest in the girth at breast height (GBH) class of 50-7o cm. The soil nutrient status of the three forest types was related to tree species diversity. The soil pH value of the three sites reflected the slightly acidic nature of the area. Species diversity was positively correlated with organic carbon and phosphorus and negatively with nitrogen, EC and pH. The results of the current study may be helpful to further develop a conservation planfor tree species in tropical sacred forest ecosystems.展开更多
Dendrimers are well-defined tree-like macromolecules possessing numerous chain ends emanating from a single core, which makes them attractive candidates for mimicking light-harvesting systems and hydrogenases. Photoin...Dendrimers are well-defined tree-like macromolecules possessing numerous chain ends emanating from a single core, which makes them attractive candidates for mimicking light-harvesting systems and hydrogenases. Photoinduced electron and energy transfers are main processes involved in light-harvesting and photocatalysis. In this review, the general concepts of design strategies and recent developments of photofunctional dendrimers in biomimics of light-harvesting systems and hydrogenases are discussed. The energy transfer and electron transfer processes in light-harvesting dendrimers and the effect of dendritic structures in photochemical hydrogen production are illustrated.展开更多
基金Supported by NSFC(11471077)the Foundation to the Educational Committee of Fujian Province(JA13025,JA13034)the New Century Excellent Talents in Fujian Province University
基金Project(50275150) supported by the National Natural Science Foundation of ChinaProjects(20040533035, 20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of China
文摘An abstraction and an investigation to the worth of dendritic cells (DCs) ability to collect, process and present antigens are presented. Computationally, this ability is shown to provide a feature reduction mechanism that could be used to reduce the complexity of a search space, a mechanism for development of highly specialized detector sets as well as a selective mechanism used in directing subsets of detectors to be activated when certain danger signals are present. It is shown that DCs, primed by different danger signals, provide a basis for different anomaly detection pathways. Different antigen-peptides are developed based on different danger signals present, and these peptides are presented to different adaptive layer detectors that correspond to the given danger signal. Experiments are then undertaken that compare current approaches, where a full antigen structure and the whole repertoire of detectors are used, with the proposed approach. Experiment results indicate that such an approach is feasible and can help reduce the complexity of the problem by significant levels. It also improves the efficiency of the system, given that only a subset of detectors are involved during the detection process. Having several different sets of detectors increases the robustness of the resulting system. Detectors developed based on peptides are also highly discriminative, which reduces the false positives rates, making the approach feasible for a real time environment.
文摘We have quantitatively analyzed the tree species diversity with respect to soil nutrient status in three sites of a sacred forest ecosystem of Niyamgiri hill range, Eastern Ghats, India. Extensive field surveys and sampling were conducted in 3 sites of the hill range: Site 1 Pterocarpus dominated forest (PTF) (19°40'02.2'' N and 83°21'23.1'' E), Site 2 Mangifera dominated forest (MAF) (19°40'02.8'' N and 83°21'40.8'' E) and Site 3 Mixed forest (MIF) (19°36'47.1" N and 83°21'02.7'' E). A total of 28 families, 42 genera, 46 tree species, and 286 individual trees were recorded on an area of0.6 ha. Tree density varied between 470 and 49o individuals ha and average basal area between 3.16 and l0.04 m2 ha-1. Shannon Index (H') ranged from 2.34 to 4.53, Simpson's Index ranged from 0.07 to o.09, and equitability Index ranged from 0.7 to 1.34. The number of individuals was highest in the girth at breast height (GBH) class of 50-7o cm. The soil nutrient status of the three forest types was related to tree species diversity. The soil pH value of the three sites reflected the slightly acidic nature of the area. Species diversity was positively correlated with organic carbon and phosphorus and negatively with nitrogen, EC and pH. The results of the current study may be helpful to further develop a conservation planfor tree species in tropical sacred forest ecosystems.
基金supported by the National Basic Research Program of China(2013CB834703,2013CB834505)the National Natural Science Foundation of China(21173245,21273258,21233011,21472201,21302196)
文摘Dendrimers are well-defined tree-like macromolecules possessing numerous chain ends emanating from a single core, which makes them attractive candidates for mimicking light-harvesting systems and hydrogenases. Photoinduced electron and energy transfers are main processes involved in light-harvesting and photocatalysis. In this review, the general concepts of design strategies and recent developments of photofunctional dendrimers in biomimics of light-harvesting systems and hydrogenases are discussed. The energy transfer and electron transfer processes in light-harvesting dendrimers and the effect of dendritic structures in photochemical hydrogen production are illustrated.