[Objective] This study aimed to explore the proteins related to pistillate flower development in different mulberry cultivars. [Method] The total proteins of the pistillate flowers of two mulberry cultivars Dal0 (Mor...[Objective] This study aimed to explore the proteins related to pistillate flower development in different mulberry cultivars. [Method] The total proteins of the pistillate flowers of two mulberry cultivars Dal0 (Morus atropurpurea Roxb.) and SG01 (Morus muIticaulis Perr.) were extracted, separated and detected through two- dimensional electrophoresis (2-DE) and mass spectrometry. [Result] There was sig- nificant difference in the expression of proteins from the pistillate flowers of different mulberry cultivars. From the 2-DE images of Dal0 and SG01, 445_+17 and 425_+12 protein spots were respectively detected. The expression levels of 75 protein spots differed significantly. Thirteen spots those were expressed at high levels and well separated were analyzed by mass spectrometry, and nine of them were identified successfully. The nine proteins are involved in the glycometabolism, protein and amino acid metabolism and defense responses during the development of mulberry pistillate flower after they were pollinated. [Conclusion] The findings will provide reference for further study on the molecular mechanism of mulberry pistillate flower de- velopment.展开更多
基金Supported by National Natural Science Foundation of China(31072087)~~
文摘[Objective] This study aimed to explore the proteins related to pistillate flower development in different mulberry cultivars. [Method] The total proteins of the pistillate flowers of two mulberry cultivars Dal0 (Morus atropurpurea Roxb.) and SG01 (Morus muIticaulis Perr.) were extracted, separated and detected through two- dimensional electrophoresis (2-DE) and mass spectrometry. [Result] There was sig- nificant difference in the expression of proteins from the pistillate flowers of different mulberry cultivars. From the 2-DE images of Dal0 and SG01, 445_+17 and 425_+12 protein spots were respectively detected. The expression levels of 75 protein spots differed significantly. Thirteen spots those were expressed at high levels and well separated were analyzed by mass spectrometry, and nine of them were identified successfully. The nine proteins are involved in the glycometabolism, protein and amino acid metabolism and defense responses during the development of mulberry pistillate flower after they were pollinated. [Conclusion] The findings will provide reference for further study on the molecular mechanism of mulberry pistillate flower de- velopment.