Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAAD...Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.展开更多
An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasit...An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasitic capacitors. The linearity error of capacitor array caused by process mismatch is calibrated by a novel calibration capacitor array that can improve the sampling rate. The dual-comparator topology ensures both the speed and precision of the ADC. The simulation results show that the SAR ADC after calibration achieves 83.07 dB SNDR and 13.5 bit ENOB at 500 kilosamples/s.展开更多
The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction bet...The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism. To estimate parameters of this model, an advanced calibration technique is applied that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is defined and numerical routines are developed, which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.展开更多
A 10Gb/s 6-tap transmit equalizer based on partial response signaling for high speed backplane transmission is presented. By combining features of equalizer and frequency-dependent channel,duobinary signaling can be g...A 10Gb/s 6-tap transmit equalizer based on partial response signaling for high speed backplane transmission is presented. By combining features of equalizer and frequency-dependent channel,duobinary signaling can be generated at the output of FR4 backplane,aiming at increasing data rate while reducing design complexity. Based on 0.18μm CMOS technology,this equalizer has been designed and fabricated,in which both variable capacitor and load resistor calibration techniques are explored to eliminate the effect of process variations. The chip occupies 0.68×0.8mm^2 including I/O pads and consumes a power of 194 mW with 1.8V power supply. Measurement results show that a typical 3-level eye diagram can be obtained at the receiver and the equalizer can work properly at the data rate of 10Gb/s.展开更多
The modern TSs (total stations) have reached a very high level in the provided reading and reliability (accuracy and precision) of their measurements. The evolution of the digital technology has helped in this dir...The modern TSs (total stations) have reached a very high level in the provided reading and reliability (accuracy and precision) of their measurements. The evolution of the digital technology has helped in this direction. Thus, the TSs can support all requirements for the stake out and monitoring of modern survey engineering and constructions projects. Their complicated manufacturing process and the sensitivity of their components require gauging, adjusting and calibration at certain time intervals. This appears to be the only way in order to assure the precision of measurements provided by the manufacturer and the reliability of the works they are used for. The goal of this paper is to propose a method for the estimation of the gauging time interval for modern YSs. which could be used by any user. More specifically, the indispensable need for the TSs gauging is elevated and documented. All the parameters that influence their operation are registered. A model expressed by a scale of grades is defined, leading thus to an equation for the calculation of the time interval for the next needed gauging and calibration.展开更多
A robust self-calibration method is presented, which can efficiently discard the outliers based on a Weighted Iteration Method (WIM). The method is an iterative process in which the projective reconstruction is obtain...A robust self-calibration method is presented, which can efficiently discard the outliers based on a Weighted Iteration Method (WIM). The method is an iterative process in which the projective reconstruction is obtained based on the weights of all the points, whereas the weights are defined in inverse proportion to the re- ciprocal of the re-projective errors. The weights of outliers trend to zero after several iterations, and the accu- rate projective reconstruction is determined. The location of the absolute conic and the camera intrinsic pa- rameters are obtained after the projective reconstruction. The theory and experiments with both simulate and real data demonstrate that the proposed method is very efficient and robust.展开更多
The fiber optic distributed temperature sensor (DTS) is one of the most outstanding means to measure temperature distribution along an optical fiber. In this paper, we propose a novel calibration technique to measur...The fiber optic distributed temperature sensor (DTS) is one of the most outstanding means to measure temperature distribution along an optical fiber. In this paper, we propose a novel calibration technique to measure the temperature highly accurately over a wide range of temperatures. We also propose an improved double-ended configuration that is insusceptible to the differential loss change in the fiber and suitable for the field use. Then, we developed an interrogator that had high robustness in harsh environments.展开更多
Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the ...Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the first forming step, the springback law can be obtained. With the springback law and the target angle, the exact punch displacement which determines the formed angle in each bending step is predicted. In the succedent forming steps, the bending process is carried out with the exact punch displacement by real-time revising the springback law. And the angle error in each forming step is calculated by comparing the actual formed angle with the target angle. By conducting compensation for the last angle error in the next forming step, each precise bending process step is realized. A system of intelligent control technology for forming the steel pipe was developed. A calibration method is proposed to calculate the exterior parameters of the CCD camera, in which the equilateral triangle is em-ployed as the calibrating board and only one image needs to be captured. A mathematical model, which converts the angle in the image into the actual formed angle, is derived. The experimental results showed that the ellipticity of the formed pipes was less than 1.5% and the high-quality pipes can be manufactured without the worker's operating experience by employing the in-telligent control technology.展开更多
文摘Comparator offset cancellation and capacitor self-calibration techniques used in a successive approximation analog-to-digital converter (SA-ADC) are described. The calibration circuit works in parallel with the SAADC by adding additional calibration clock cycles to pursue high accuracy and low power consumption, and the calibrated resolution can be up to 14bit. This circuit is used in a 10bit 3Msps successive approximation ADC. This chip is realized with an SMIC 0. 18μm 1.8V process and occupies 0.25mm^2 . It consumes 3. 1mW when operating at 1.8MHz. The measured SINAD is 55. 9068dB, SFDR is 64. 5767dB, and THD is - 74. 8889dB when sampling a 320kHz sine wave.
基金Supported by National Science and Technology Major Project of China(No.2012ZX03004008)
文摘An error correction technique to achieve a 14-bit successive approximation register analog-to-digital converter(SAR ADC) is proposed. A tunable split capacitor is designed to eliminate the mismatches caused by parasitic capacitors. The linearity error of capacitor array caused by process mismatch is calibrated by a novel calibration capacitor array that can improve the sampling rate. The dual-comparator topology ensures both the speed and precision of the ADC. The simulation results show that the SAR ADC after calibration achieves 83.07 dB SNDR and 13.5 bit ENOB at 500 kilosamples/s.
文摘The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism. To estimate parameters of this model, an advanced calibration technique is applied that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is defined and numerical routines are developed, which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.
基金Supported by the National Natural Science Foundation of China(No.61471119)
文摘A 10Gb/s 6-tap transmit equalizer based on partial response signaling for high speed backplane transmission is presented. By combining features of equalizer and frequency-dependent channel,duobinary signaling can be generated at the output of FR4 backplane,aiming at increasing data rate while reducing design complexity. Based on 0.18μm CMOS technology,this equalizer has been designed and fabricated,in which both variable capacitor and load resistor calibration techniques are explored to eliminate the effect of process variations. The chip occupies 0.68×0.8mm^2 including I/O pads and consumes a power of 194 mW with 1.8V power supply. Measurement results show that a typical 3-level eye diagram can be obtained at the receiver and the equalizer can work properly at the data rate of 10Gb/s.
文摘The modern TSs (total stations) have reached a very high level in the provided reading and reliability (accuracy and precision) of their measurements. The evolution of the digital technology has helped in this direction. Thus, the TSs can support all requirements for the stake out and monitoring of modern survey engineering and constructions projects. Their complicated manufacturing process and the sensitivity of their components require gauging, adjusting and calibration at certain time intervals. This appears to be the only way in order to assure the precision of measurements provided by the manufacturer and the reliability of the works they are used for. The goal of this paper is to propose a method for the estimation of the gauging time interval for modern YSs. which could be used by any user. More specifically, the indispensable need for the TSs gauging is elevated and documented. All the parameters that influence their operation are registered. A model expressed by a scale of grades is defined, leading thus to an equation for the calculation of the time interval for the next needed gauging and calibration.
基金Supported by the National Natural Science Foundation of China (No.60473119 and No.60372043).
文摘A robust self-calibration method is presented, which can efficiently discard the outliers based on a Weighted Iteration Method (WIM). The method is an iterative process in which the projective reconstruction is obtained based on the weights of all the points, whereas the weights are defined in inverse proportion to the re- ciprocal of the re-projective errors. The weights of outliers trend to zero after several iterations, and the accu- rate projective reconstruction is determined. The location of the absolute conic and the camera intrinsic pa- rameters are obtained after the projective reconstruction. The theory and experiments with both simulate and real data demonstrate that the proposed method is very efficient and robust.
文摘The fiber optic distributed temperature sensor (DTS) is one of the most outstanding means to measure temperature distribution along an optical fiber. In this paper, we propose a novel calibration technique to measure the temperature highly accurately over a wide range of temperatures. We also propose an improved double-ended configuration that is insusceptible to the differential loss change in the fiber and suitable for the field use. Then, we developed an interrogator that had high robustness in harsh environments.
基金Supported by the National Natural Science Foundation of China (Grant No. 50805126)the Hebei Natural Science Foundation (Grant No. E2009000389)
文摘Based on plastic bending engineering theory and machine vision technology, the intelligent control technology for forming steel pipe with JCO process is presented in this paper. By ‘twice pre-bending method’ in the first forming step, the springback law can be obtained. With the springback law and the target angle, the exact punch displacement which determines the formed angle in each bending step is predicted. In the succedent forming steps, the bending process is carried out with the exact punch displacement by real-time revising the springback law. And the angle error in each forming step is calculated by comparing the actual formed angle with the target angle. By conducting compensation for the last angle error in the next forming step, each precise bending process step is realized. A system of intelligent control technology for forming the steel pipe was developed. A calibration method is proposed to calculate the exterior parameters of the CCD camera, in which the equilateral triangle is em-ployed as the calibrating board and only one image needs to be captured. A mathematical model, which converts the angle in the image into the actual formed angle, is derived. The experimental results showed that the ellipticity of the formed pipes was less than 1.5% and the high-quality pipes can be manufactured without the worker's operating experience by employing the in-telligent control technology.