To ensure success of precise navigation, it is necessary to carry out in-field calibration for the accelerometers in platform inertial navigation system(PINS) before a mission is launched.Traditional continuous self-c...To ensure success of precise navigation, it is necessary to carry out in-field calibration for the accelerometers in platform inertial navigation system(PINS) before a mission is launched.Traditional continuous self-calibration methods are not fit for fast calibration of accelerometers because the platform misalignments have to be estimated precisely and the nonlinear coupling terms will affect accuracy. The multi-position methods with a "shape of motion" algorithm also have some existing disadvantages: High precision calibration results cannot be obtained when the accelerometer's output data are used directly and it is difficult to optimize the calibration scheme. Focusing on this field, this paper proposes new fast self-calibration methods for the accelerometers of PINS. A data compression filter is employed to improve the accuracy of parameter estimation because it is impossible to obtain non-biased estimation for accelerometer parameters when using the "shape of motion" algorithm. Besides, continuous calibration schemes are designed and optimized by the genetic algorithm(GA) to improve the observability of parameters. Simulations prove that the proposed methods can estimate the accelerometer parameter more precisely than traditional continuous methods and multi-position methods, and they are more practical to deal with urgent situations than multi-position methods.展开更多
An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design o...An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design of an auto-calibrating system for electrochemical (pH) sensors, which permits two-point in situ calibration, suitable for long-term measurement in deep sea aqueous environments. Holding multiple sensors, the instrument is designed to perform long-term measurements and in situ calibrations at abyssal depth (up to 4000 m). The instrument is composed of a compact fluid control system which is pressure-equilibrated and designed for deep-sea operation. In situ calibration capability plays a key role in the quality and reproducibility of the data. This paper focuses on methods for extending the lifetime of the instrument, considering the fluidics design, mechanical design, and low-power consumption of the electronics controller. The instrument can last 46 d under normal operating conditions, fulfilling the need for long-term operation. Data concerning pH measured during the KNOX18RR cruise (Mid-Atlantic Ridge, July-August, 2008) illustrate the desirable properties of the instrument. Combined with different electrodes (pH, H2, H2S, etc.), it should be of great utility for the study of deep ocean environments, including water column and diffuse-flow hydrothermal fluids.展开更多
文摘To ensure success of precise navigation, it is necessary to carry out in-field calibration for the accelerometers in platform inertial navigation system(PINS) before a mission is launched.Traditional continuous self-calibration methods are not fit for fast calibration of accelerometers because the platform misalignments have to be estimated precisely and the nonlinear coupling terms will affect accuracy. The multi-position methods with a "shape of motion" algorithm also have some existing disadvantages: High precision calibration results cannot be obtained when the accelerometer's output data are used directly and it is difficult to optimize the calibration scheme. Focusing on this field, this paper proposes new fast self-calibration methods for the accelerometers of PINS. A data compression filter is employed to improve the accuracy of parameter estimation because it is impossible to obtain non-biased estimation for accelerometer parameters when using the "shape of motion" algorithm. Besides, continuous calibration schemes are designed and optimized by the genetic algorithm(GA) to improve the observability of parameters. Simulations prove that the proposed methods can estimate the accelerometer parameter more precisely than traditional continuous methods and multi-position methods, and they are more practical to deal with urgent situations than multi-position methods.
基金Project supported by National Natural Science Foundation of China (No. 40637037)the National High-Tech Research and Development Program (863) of China (No. 2007AA091901)+1 种基金the National Science Foundation of U.S. (No. 0525907)the China Scholarship Council (No. 2009632124)
文摘An in situ calibration system is a versatile exploration instrument for electrochemical sensors investigating the biochemical properties of the marine environment. The purpose of this paper is to describe the design of an auto-calibrating system for electrochemical (pH) sensors, which permits two-point in situ calibration, suitable for long-term measurement in deep sea aqueous environments. Holding multiple sensors, the instrument is designed to perform long-term measurements and in situ calibrations at abyssal depth (up to 4000 m). The instrument is composed of a compact fluid control system which is pressure-equilibrated and designed for deep-sea operation. In situ calibration capability plays a key role in the quality and reproducibility of the data. This paper focuses on methods for extending the lifetime of the instrument, considering the fluidics design, mechanical design, and low-power consumption of the electronics controller. The instrument can last 46 d under normal operating conditions, fulfilling the need for long-term operation. Data concerning pH measured during the KNOX18RR cruise (Mid-Atlantic Ridge, July-August, 2008) illustrate the desirable properties of the instrument. Combined with different electrodes (pH, H2, H2S, etc.), it should be of great utility for the study of deep ocean environments, including water column and diffuse-flow hydrothermal fluids.