期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
近红外光谱在聚氨酯原料检测中的应用 被引量:4
1
作者 李淑杰 周青 +2 位作者 张丽丽 刘海蓉 喻建明 《聚氨酯工业》 北大核心 2016年第2期42-46,共5页
利用偏最小二乘法(PLS)建立了定量分析预测模型,通过标准值与预测值之间的相关系数和校正均方差评价模型,开发了近红外技术测试聚氨酯原料中NCO含量、羟值、酸值、水分以及EO含量相关指标的方法。通过实验表明,采用近红外光谱检测节省... 利用偏最小二乘法(PLS)建立了定量分析预测模型,通过标准值与预测值之间的相关系数和校正均方差评价模型,开发了近红外技术测试聚氨酯原料中NCO含量、羟值、酸值、水分以及EO含量相关指标的方法。通过实验表明,采用近红外光谱检测节省了测试时间,提高了测试效率,而且还证明了控制测试温度及建模用样品分类的重要性。对聚氨酯的生产和研究具有重要意义。 展开更多
关键词 近红外 聚氨酯 相关系数 校正均方差 分析预测模型
下载PDF
An Extension of the Dimension-Reduced Projection 4DVar
2
作者 SHEN Si LIU Juan-Juan WANG Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第4期324-329,共6页
This paper extends the dimension-reduced projection four-dimensional variational assimilation method(DRP-4DVar) by adding a nonlinear correction process,thereby forming the DRP-4DVar with a nonlinear correction, which... This paper extends the dimension-reduced projection four-dimensional variational assimilation method(DRP-4DVar) by adding a nonlinear correction process,thereby forming the DRP-4DVar with a nonlinear correction, which shall hereafter be referred to as the NC-DRP-4DVar. A preliminary test is conducted using the Lorenz-96 model in one single-window experiment and several multiple-window experiments. The results of the single-window experiment show that compared with the adjoint-based traditional 4DVar, the final convergence of the cost function for the NC-DRP-4DVar is almost the same as that using the traditional 4DVar, but with much less computation. Furthermore, the 30-window assimilation experiments demonstrate that the NC-DRP-4DVar can alleviate the linearity approximation error and reduce the root mean square error significantly. 展开更多
关键词 data assimilation linear approximation nonlinear correction OSSE
下载PDF
A method for correcting regional bias in SMOS global salinity products
3
作者 佟晓林 王振占 李青侠 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2015年第4期1072-1084,共13页
Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data f... Soil Moisture and Ocean Salinity (SMOS) Level 3 (L3) sea surface salinity (SSS) products are provided by the Barcelona Expert Centre (BEC). Strong biases were observed on the SMOS SSS products, thus the data from the Centre Aval de Traitement des Donnees SMOS (CATDS) were adjusted for biases using a large-scale correction derived from observed differences between the SMOS SSS and World Ocean Atlas (WOA) climatology data. However, this large-scale correction method is not suitable for correcting the large gradient of salinity biases. Here, we present a method for the correction of SSS regional bias of the monthly L3 products. Based on the stable characteristics of the large SSS biases from month to month in some regions, corrected SMOS SSS maps can be obtained from the monthly mean values after removing the regional biases. The accuracy of the SMOS SSS measurements is greatly improved, especially near the coastline, at high latitudes, and in some open ocean regions. The SMOS and ISAS SSS data are also compared with Aquarius SSS to verify the corrected SMOS SSS data. The correction method presented here only corrects annual mean biases. The measurement accuracy of the SSS may be improved by considering the influence of atmospheric and ocean circulation in different seasons and years. 展开更多
关键词 ocean salinity microwave radiometry sea surface Soil Moisture and Ocean Salinity (SMOS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部