An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+H...An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system(ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching,and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of0.9-37.5 ng/L, the relative standard deviation of each element is within 1.1%-4.8%, and the recovery of each element is 90%-108%.展开更多
Based upon the standard deviations for the intercept and the slope of a linear regression line, as well as by differentiating both Beer's law and a linear relationship between transmittance and concentration at high ...Based upon the standard deviations for the intercept and the slope of a linear regression line, as well as by differentiating both Beer's law and a linear relationship between transmittance and concentration at high transmission, it is proved that the relative spectrophotometric error of a measurement becomes greater as the sample concentration only decreases. Further, it is demonstrated that the present knowledge with regard to the error in absorption spectrophotometry is necessary to be reexamined. The total scale of transmittance can literally be used for measurements, unfolding workable dynamic ranges about two orders of magnitude lower than usually and thus absorption spectrophotometry can efficiently compete with other methods of analysis with respect to detection limits.展开更多
基金Project(21271187)supported by the National Natural Science Foundation of ChinaProject(cstc2013jcyj A10088)supported by the Chongqing Natural Science Foundation,China+1 种基金Projects(2013FJ3093,2013SK3268)supported by the Science and Technology Project of Hunan Province,ChinaProject(KJZH14217)supported by Achievement Transfer Education in Chongqing,China
文摘An inductively coupled plasma mass spectrometry(ICP-MS) method was developed for the determination of Na, Mg, Al,K, Ca, Ti, Cr, Co, Ni, Cu, Ga, As, Mo, Ag, Cd and Pb in MnZn ferrites. The sample was digested by HNO3+HCl with microwave digestion followed by dilution with ultrapure water, then the above 16 impurity elements in the solution were analyzed directly by ICP-MS. The impurity elements were introduced by the helium gas or hydrogen gas into the octopole reaction system(ORS) to eliminate the polyatomic interferences caused by the high salty matrixes. The matrix effect was minimized through matrix matching,and Be, Y and Rh were used as internal standard elements. The working parameters of the instrument were optimized. The results show that the method has good precision and high accuracy. The detection limits for the investigated elements are in the range of0.9-37.5 ng/L, the relative standard deviation of each element is within 1.1%-4.8%, and the recovery of each element is 90%-108%.
文摘Based upon the standard deviations for the intercept and the slope of a linear regression line, as well as by differentiating both Beer's law and a linear relationship between transmittance and concentration at high transmission, it is proved that the relative spectrophotometric error of a measurement becomes greater as the sample concentration only decreases. Further, it is demonstrated that the present knowledge with regard to the error in absorption spectrophotometry is necessary to be reexamined. The total scale of transmittance can literally be used for measurements, unfolding workable dynamic ranges about two orders of magnitude lower than usually and thus absorption spectrophotometry can efficiently compete with other methods of analysis with respect to detection limits.