A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the design...A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small.展开更多
The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sa...The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple random sampling (SSRS). It is shown that SDQRSS estimator is an unbiased of the population mean and more efficient than SRS, SRSS and SSRS for symmetric and asymmetric distributions. In addition, by SDQRSS we can increase the efficiency of mean estimator for specific value of the sample size.展开更多
Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and...Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.展开更多
基金Project(2011BAE23B05)supported by National Key Technology R&D Program of ChinaProject(61004134)supported by the National Natural Science Foundation of ChinaProject(LQ13F030007)supported by Zhejiang Provincial Natural Science Foundation of China
文摘A vision-based color analysis system was developed for rapid estimation of copper content in the secondary copper smelting process. Firstly, cross section images of secondary copper samples were captured by the designed vision system. After the preprocessing and segmenting procedures, the images were selected according to their grayscale standard deviations of pixels and percentages of edge pixels in the luminance component. The selected images were then used to extract the information of the improved color vector angles, from which the copper content estimation model was developed based on the least squares support vector regression (LSSVR) method. For comparison, three additional LSSVR models, namely, only with sample selection, only with improved color vector angle, without sample selection or improved color vector angle, were developed. In addition, two exponential models, namely, with sample selection, without sample selection, were developed. Experimental results indicate that the proposed method is more effective for improving the copper content estimation accuracy, particularly when the sample size is small.
文摘The procedure of stratified double quartile ranked set sampling (SDQRSS) method is introduced to estimate the population mean. The SDQRSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple random sampling (SSRS). It is shown that SDQRSS estimator is an unbiased of the population mean and more efficient than SRS, SRSS and SSRS for symmetric and asymmetric distributions. In addition, by SDQRSS we can increase the efficiency of mean estimator for specific value of the sample size.
基金supported by the National Natural Science Foundation of China (No. 11071022)the Key Project of the Ministry of Education of China (No. 209078)the Youth Project of Hubei Provincial Department of Education of China (No. Q20122202)
文摘Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.