针对小样本语义分割中同类别支持图像与查询图像存在外观差异较大的问题,提出融合高斯过程的自支持匹配小样本语义分割模型。提出的模型在自支持匹配小样本语义分割模型的基础上,首先融入高斯过程,对分布在深层特征空间上的复杂外观进...针对小样本语义分割中同类别支持图像与查询图像存在外观差异较大的问题,提出融合高斯过程的自支持匹配小样本语义分割模型。提出的模型在自支持匹配小样本语义分割模型的基础上,首先融入高斯过程,对分布在深层特征空间上的复杂外观进行建模,捕获更多空间细节信息来表示数据分布;随后设计特征增强模块,在空间层对支持特征与查询特征进行信息交互,在通道层进行注意力加权,进一步增强相同类之间的全局相似性,捕获更多目标类别信息;最后利用Gram矩阵量化支持图像和查询图像之间外观差异的大小,从而融合原型匹配的结果,产生更准确的分割图像。实验结果表明:与现有方法相比,所提模型在更强的主干网络下具有较好的分割结果和更少的参数量,在5-shot的设定下,所提模型在PASCAL−5i数据集上平均交并比(mean Intersection over Union,mIoU)达到最优值,提升了0.4%;在COCO−20i数据集上的子集mIoU取得最优值,分别提升了2.2%和1.0%,表明该模型的有效性和先进性。展开更多
文摘针对小样本语义分割中同类别支持图像与查询图像存在外观差异较大的问题,提出融合高斯过程的自支持匹配小样本语义分割模型。提出的模型在自支持匹配小样本语义分割模型的基础上,首先融入高斯过程,对分布在深层特征空间上的复杂外观进行建模,捕获更多空间细节信息来表示数据分布;随后设计特征增强模块,在空间层对支持特征与查询特征进行信息交互,在通道层进行注意力加权,进一步增强相同类之间的全局相似性,捕获更多目标类别信息;最后利用Gram矩阵量化支持图像和查询图像之间外观差异的大小,从而融合原型匹配的结果,产生更准确的分割图像。实验结果表明:与现有方法相比,所提模型在更强的主干网络下具有较好的分割结果和更少的参数量,在5-shot的设定下,所提模型在PASCAL−5i数据集上平均交并比(mean Intersection over Union,mIoU)达到最优值,提升了0.4%;在COCO−20i数据集上的子集mIoU取得最优值,分别提升了2.2%和1.0%,表明该模型的有效性和先进性。