期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Application of Transfer Learningin Mechanical Equipment Intelligent Diagnosis:Literature Review
1
作者 LIU Tao WANG Zhenya +1 位作者 WU Xing LI Menghang 《昆明理工大学学报(自然科学版)》 北大核心 2024年第4期154-169,共16页
Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the ... Accelerating the process of intelligent manufacturing and the demand for new industrial productivity,the operating conditions of machinery and equipment have become ever more severe.As an important link to ensure the stable operation of the production process,the condition monitoring and fault diagnosis of equipment have become equally important.The fault diagnosis of equipment in actual production is often challenged by variable working conditions,large differences in data distribution,and lack of labeled samples,etc.Traditional fault diagnosis methods are often difficult to achieve ideal results in these complex environments.Transfer learning(TL)as an emerging technology can effectively utilize existing knowledge and data to improve the diagnostic performance.Firstly,this paper analyzes the trend of mechanical equipment fault diagnosis and explains the basic concept of TL.Then TL based on parameters,TL based on features,TL based on instances and domain adaptive(DA)methods are summarized and analyzed in terms of existing TL methods.Finally,the problems faced in the current TL research are summarized and the future development trend is pointed out.This review aims to help researchers in related fields understand the latest progress of TL and promote the application and development of TL in mechanical equipment diagnosis. 展开更多
关键词 mechanical equipment transfer learning variable operating conditions fault diagnosis sample distribution differences
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部