针对不均衡数据分类问题中原有过采样方法在生成样本分布上存在的不足,文章提出改进合成样本分布的加权过采样方法——WKSMOTE(Weighted SMOTE for WKMeans preprocess)。首先,应用聚类算法中的WKMeans算法对原数据集进行预处理,进而划...针对不均衡数据分类问题中原有过采样方法在生成样本分布上存在的不足,文章提出改进合成样本分布的加权过采样方法——WKSMOTE(Weighted SMOTE for WKMeans preprocess)。首先,应用聚类算法中的WKMeans算法对原数据集进行预处理,进而划分少数类样本,使每个样本生成不同数量的新样本;然后,应用SMOTE算法合成新样本,增强决策边界;最后,将过采样后的均衡数据集在随机森林分类器中进行训练。实验结果表明,WKSMOTE方法对不均衡数据集的整体分类性能有一定的提升,验证了方法的有效性。展开更多
文摘针对不均衡数据分类问题中原有过采样方法在生成样本分布上存在的不足,文章提出改进合成样本分布的加权过采样方法——WKSMOTE(Weighted SMOTE for WKMeans preprocess)。首先,应用聚类算法中的WKMeans算法对原数据集进行预处理,进而划分少数类样本,使每个样本生成不同数量的新样本;然后,应用SMOTE算法合成新样本,增强决策边界;最后,将过采样后的均衡数据集在随机森林分类器中进行训练。实验结果表明,WKSMOTE方法对不均衡数据集的整体分类性能有一定的提升,验证了方法的有效性。