期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
即墨区墨水河样板段工程综合整治初探
1
作者 曹进 夏友超 +1 位作者 王开谟 张建峰 《中文科技期刊数据库(文摘版)工程技术》 2024年第11期041-044,共4页
墨水河虽然历经多次整治,仍存在较多问题。为提升城市形象,打造环境优美的滨河休闲空间,即墨区将墨水河204国道至青烟路段(长约5.3km)确定为墨水河综合整治工程样板段,打算利用两年时间,对该段河道进行综合整治,力争将该区域打造成墨水... 墨水河虽然历经多次整治,仍存在较多问题。为提升城市形象,打造环境优美的滨河休闲空间,即墨区将墨水河204国道至青烟路段(长约5.3km)确定为墨水河综合整治工程样板段,打算利用两年时间,对该段河道进行综合整治,力争将该区域打造成墨水河流域整治的精品样板工程。本文从水利、治污、路桥、景观等多方面对墨水河样板段现状进行分析研究,并在此基础上提出整治方案,本文可为其他城市河道整治提供参考。 展开更多
关键词 墨水河 样本段 整治方案
下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
2
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部