为了解决不均衡数据集的分类问题和一般的代价敏感学习算法无法扩展到多分类情况的问题,提出了一种基于 K 最近邻( K NN)样本平均距离的代价敏感算法的集成方法。首先,根据最大化最小间隔的思想提出一种降低决策边界样本密度的重采样方...为了解决不均衡数据集的分类问题和一般的代价敏感学习算法无法扩展到多分类情况的问题,提出了一种基于 K 最近邻( K NN)样本平均距离的代价敏感算法的集成方法。首先,根据最大化最小间隔的思想提出一种降低决策边界样本密度的重采样方法;接着,采用每类样本的平均距离作为分类结果的判断依据,并提出一种符合贝叶斯决策理论的学习算法,使得改进后的算法具备代价敏感性;最后,对改进后的代价敏感算法按 K 值进行集成,以代价最小为原则,调整各基学习器的权重,得到一个以总体误分代价最低为目标的代价敏感AdaBoost算法。实验结果表明,与传统的 K NN算法相比,改进后的算法在平均误分代价上下降了31.4个百分点,并且代价敏感性能更好。展开更多
文摘为了解决不均衡数据集的分类问题和一般的代价敏感学习算法无法扩展到多分类情况的问题,提出了一种基于 K 最近邻( K NN)样本平均距离的代价敏感算法的集成方法。首先,根据最大化最小间隔的思想提出一种降低决策边界样本密度的重采样方法;接着,采用每类样本的平均距离作为分类结果的判断依据,并提出一种符合贝叶斯决策理论的学习算法,使得改进后的算法具备代价敏感性;最后,对改进后的代价敏感算法按 K 值进行集成,以代价最小为原则,调整各基学习器的权重,得到一个以总体误分代价最低为目标的代价敏感AdaBoost算法。实验结果表明,与传统的 K NN算法相比,改进后的算法在平均误分代价上下降了31.4个百分点,并且代价敏感性能更好。