期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于边际Fisher准则和迁移学习的小样本集分类器设计算法 被引量:12
1
作者 舒醒 于慧敏 +3 位作者 郑伟伟 谢奕 胡浩基 唐慧明 《自动化学报》 EI CSCD 北大核心 2016年第9期1313-1321,共9页
如何利用大量已有的同构标记数据(源域)设计小样本训练数据(目标域)的分类器是一个具有很强应用意义的研究问题.由于不同域的数据特征分布有差异,直接使用源域数据对目标域样本进行分类的效果并不理想.针对上述问题,本文提出了一种基于... 如何利用大量已有的同构标记数据(源域)设计小样本训练数据(目标域)的分类器是一个具有很强应用意义的研究问题.由于不同域的数据特征分布有差异,直接使用源域数据对目标域样本进行分类的效果并不理想.针对上述问题,本文提出了一种基于迁移学习的分类器设计算法.首先,本文利用内积度量的边际Fisher准则对源域进行特征映射,提高源域中类内紧凑性和类间区分性.其次,为了筛选合理的训练样本对,本文提出一种去除边界奇异点的算法来选择源域密集区域样本点,与目标域中的标记样本点组成训练样本对.在核化空间上,本文学习了目标域特征到源域特征的非线性转换,将目标域映射到源域.最后,利用邻近算法(k-nearest neighbor,k NN)分类器对映射后的目标域样本进行分类.本文不仅改进了边际Fisher准则方法,并且将基于自适应样本对筛选的迁移学习应用到小样本数据的分类器设计中,提高域间适应性.在通用数据集上的实验结果表明,本文提出的方法能够有效提高小样本训练域的分类器性能. 展开更多
关键词 样本集分类 迁移学习 边际Fisher准则 k NN分类 域间转换
下载PDF
基于混合光谱特征的建筑物高分影像分类样本筛选 被引量:2
2
作者 李百寿 陈婷 高玉久 《桂林理工大学学报》 CAS 北大核心 2014年第4期704-710,共7页
设计了随机样本、感兴趣样本筛选方案,选择典型建筑物样本瓦片通过K-means非监督分类获得核心地类的最小样本信息及提高精度的影响因素。利用二值聚类获取建筑物的错分漏分光谱变化,从光谱统计角度分析高空间分辨率影像的聚类分割规律,... 设计了随机样本、感兴趣样本筛选方案,选择典型建筑物样本瓦片通过K-means非监督分类获得核心地类的最小样本信息及提高精度的影响因素。利用二值聚类获取建筑物的错分漏分光谱变化,从光谱统计角度分析高空间分辨率影像的聚类分割规律,发现地表真实像元的光谱特征与聚类结果类别光谱分布的内在联系,提出了解决建筑物混合光谱感兴趣区筛选的有效方法。研究表明,该方法可以更好的了解高分影像分类器性能对样本瓦片先验场景光谱分布的依赖程度,进而提高建筑物的分类精度。 展开更多
关键词 建筑物 分类样本 混合光谱特征 场景瓦片 高分遥感
下载PDF
基于邻域嵌入的彩色图像超分辨率重建 被引量:1
3
作者 杨文峰 郑洁莹 +2 位作者 干宗良 崔子冠 刘峰 《计算机技术与发展》 2015年第6期25-28,共4页
单幅彩色图像进行超分辨率重建,一般先对亮度分量Y进行超分辨率重建,再对色度分量U和V进行简单插值,重建图像色彩模糊。针对此问题,文中提出一种同时对亮度与色度分量进行基于邻域嵌入的彩色图像超分辨率重建算法,该算法有效利用了色度... 单幅彩色图像进行超分辨率重建,一般先对亮度分量Y进行超分辨率重建,再对色度分量U和V进行简单插值,重建图像色彩模糊。针对此问题,文中提出一种同时对亮度与色度分量进行基于邻域嵌入的彩色图像超分辨率重建算法,该算法有效利用了色度分量的先验信息。为提高算法效率,使用K均值聚类的方法对样本集进行分类,并使用二叉树搜索方法确定样本类别。实验结果表明,文中提出的算法不仅提高了彩色图像的重建质量,并有效降低了算法的运行时间。 展开更多
关键词 彩色图像超分重建 邻域嵌入 色度分量 样本集分类
下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
4
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部