期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
样条积分方程法分析变厚板 被引量:2
1
作者 王有成 《计算结构力学及其应用》 CAS CSCD 1991年第1期33-40,共8页
本文用虚载法分别导出Reissner型和Kirchhoff型变厚板方程,它们各自等价于一块单位刚度板,从而可用等厚板样条积分方程法来求解。板的外形、支承和受载都没有什么限制,在稀疏剖分下也有良好的精度。文中还论证了这两种板理论在多边形简... 本文用虚载法分别导出Reissner型和Kirchhoff型变厚板方程,它们各自等价于一块单位刚度板,从而可用等厚板样条积分方程法来求解。板的外形、支承和受载都没有什么限制,在稀疏剖分下也有良好的精度。文中还论证了这两种板理论在多边形简支和轴对称弯曲下的相通性,并提出一种在应力约束下从板的满应力解搜索其最优解的方法。 展开更多
关键词 样条积分方程 变厚板
下载PDF
圆板大挠度新的样条积分方程法 被引量:1
2
作者 郑建军 《工程力学》 EI CSCD 1990年第3期132-140,共9页
本文提出了圆板大挠度新的样条积分方程法。根据圆板大挠度问题的二个平衡方程及环基本解,导出了一组积分方程,再利用样条函数法进行求解。由于采用了样条插值,只要划分少量单元就能获得精度很高的数值解。本文成果与精确解良好吻合。
关键词 圆板大挠度 样条积分方程
下载PDF
铝电解槽三维磁场的计算与优化(Ⅰ)——样条积分方程法计算三维磁场
3
作者 刘志珍 陈红艳 安琳 《山东大学学报(工学版)》 CAS 2007年第1期27-30,共4页
介绍了样条积分方程法求解三维磁场的原理,通过计算TEAM Workshop 21问题A模型的磁场,验证了该方法的正确性.首次运用该方法对一台180 kA的预焙阳极铝电解槽的三维磁场进行了计算,计算值与测试值吻合较好,证明了该方法的有效性.
关键词 样条积分方程 铝电解槽 三维磁场
下载PDF
圆板弹塑性弯曲的简单样条积分方程法
4
作者 郑建军 《应用力学学报》 CAS CSCD 北大核心 1993年第1期82-87,138-139,共6页
提出了圆板弹塑性弯曲的简单样条积分方程法.以径向转角作为未知量建立积分方程并结合B样条函数进行求解.这一方法具有域积分容易处理、精度高和计算简单的优点.计算结果表明本文解与文[2]解吻合良好.
关键词 样条积分方程 板屈地 材料力学
下载PDF
基于点云增强优化的泊松重建算法 被引量:13
5
作者 刘涛 高媛 +1 位作者 秦品乐 王丽芳 《计算机应用研究》 CSCD 北大核心 2018年第3期940-943,948,共5页
为了提高大规模散乱点云的重建精度和效率,针对泊松算法在实际工程应用过程中产生的数据空白现象以及不能很好地捕捉重建表面局部细节的缺陷提出了改进。通过对采样点中的异常点进行详细分析,根据分析结果进行相应的降噪后处理,利用双... 为了提高大规模散乱点云的重建精度和效率,针对泊松算法在实际工程应用过程中产生的数据空白现象以及不能很好地捕捉重建表面局部细节的缺陷提出了改进。通过对采样点中的异常点进行详细分析,根据分析结果进行相应的降噪后处理,利用双三次样条插值方程拟合曲面,能够很好地修复孔洞,解决点云模型全局偏移的问题,形成新的采样点,采用最小二乘法精确计算并调整了点云数据法向量;实验解决了传统算法重建的面片质量问题,使重建出的表面细节更加显著。实验结果表明,该方法具有良好的适用性,具有较高的重建效率和精度。 展开更多
关键词 点云重建 双三次样条插值方程 最小二乘法 泊松方程 隐式曲面 孔洞修复
下载PDF
正多边形控制的曲线段及其性质
6
作者 段仁军 肖幸娟 《数学理论与应用》 2001年第3期29-34,共6页
本文给出了由多边形控制曲线段的方法 ,并依据多边形边长的延长量的性质 ,讨论了相应曲线段的性质 ,并给出了数值例子和对应图象 ,文末还给出了以曲线段为切线多边形的B
关键词 多边形 曲线段 极限 B-样条曲线方程 插值函数
下载PDF
基于CNC齿轮测量中心的回转体通用测量方案
7
作者 张蕾 张海亮 《工具技术》 2019年第2期139-142,共4页
传统的回转体检测仪器存在无法通用测量、检测效率低、受人为因素影响等缺点。通过分析回转体工件的结构特点及测量难点,提出采用旋转拉伸曲面的数学表达式和样条方程的快速算法来解决现有问题。基于三维CNC齿轮测量平台开发了高效率、... 传统的回转体检测仪器存在无法通用测量、检测效率低、受人为因素影响等缺点。通过分析回转体工件的结构特点及测量难点,提出采用旋转拉伸曲面的数学表达式和样条方程的快速算法来解决现有问题。基于三维CNC齿轮测量平台开发了高效率、高精度在线回转体通用测量软件,可实现多种回转体工件的通用测量。 展开更多
关键词 回转体通用测量 旋转拉伸曲面 样条方程 高精度 高效率
下载PDF
Artificial perturbation for solving the Korteweg-de Vries equation 被引量:1
8
作者 KHELIL N. BENSALAH N. +1 位作者 SAIDI H. ZERARKA A. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第12期2079-2082,共4页
A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the qu... A perturbation method is introduced in the context of dynamical system for solving the nonlinear Korteweg-de Vries (KdV) equation. Best efficiency is obtained for few perturbative corrections. It is shown that, the question of convergence of this approach is completely guaranteed here, because a limited number of term included in the series can describe a sufficient exact solution. Comparisons with the solutions of the quintic spline, and finite difference are presented. 展开更多
关键词 PERTURBATION Taylor series Quintic spline Korteweg-de Vries (KdV) equation
下载PDF
B-Spline with Symplectic Algorithm Method for Solution of Time-Dependent Schrodinger Equations 被引量:2
9
作者 卞学滨 乔豪学 史庭云 《Chinese Physics Letters》 SCIE CAS CSCD 2006年第9期2403-2406,共4页
A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is ... A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references. 展开更多
关键词 ORDER HARMONIC-GENERATION MULTIPHOTON IONIZATION QUANTUM SYSTEM LASERFIELDS SCHEME ATOM
下载PDF
A Novel Approach for Numerical Computation of Fokker-Planck Equation
10
作者 Pramod Kumar Brajesh Kumar Singh Shobh Nath Rai 《Journal of Mathematics and System Science》 2016年第7期291-299,共9页
This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numer... This paper present an implementation of"modified cubic B-spline differential quadrature method (MCB-DQM)" proposed by Arora & Singh (Applied Mathematics and Computation Vol. 224(1) (2013) 161-177) for numerical computation of Fokker-Planck equations. The modified cubic B-splines are used as set of basis functions in the differential quadrature to compute the weighting coefficients for the spatial derivatives, which reduces Fokker-Planck equation into system of first-order ordinary differential equations (ODEs), in time. The well known SSP-RK43 scheme is then applied to solve the resulting system of ODEs. The efficiency of proposed method has been confirmed by three examples having their exact solutions. This shows that MCB-DQM results are capable of achieving high accuracy. Advantage of the scheme is that it can be applied very smoothly to solve the linear or nonlinear physical problems, and a very less storage space is required which causes less accumulation of numerical errors. 展开更多
关键词 Fokker-Planck equation modified cubic B-spline MCB-DQM SSP-RK43 Thomas algorithm
下载PDF
B-SPLINE PATCHES AND TRANSFINITE INTERPOLATION METHOD FOR PDE CONTROLLED SIMULATION 被引量:1
11
作者 Yuanjie LIU Hongbo LI 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第2期348-361,共14页
This paper is to discuss an approach which combines B-spline patches and transfinite interpolation to establish a linear algebraic system for solving partial differential equations and modify the WEB-spline method dev... This paper is to discuss an approach which combines B-spline patches and transfinite interpolation to establish a linear algebraic system for solving partial differential equations and modify the WEB-spline method developed by Klaus Hollig to derive this new idea. First of all, the authors replace the R-function method with transfinite interpolation to build a function which vanishes on boundaries. Secondly, the authors simulate the partial differential equation by directly applying differential opera- tors to basis functions, which is similar to the RBF method rather than Hollig's method. These new strategies then make the constructing of bases and the linear system much more straightforward. And as the interpolation is brought in, the design of schemes for solving practical PDEs can be more flexi- ble. This new method is easy to carry out and suitable for simulations in the fields such as graphics to achieve rapid rendering. Especially when the specified much faster than WEB-spline method. precision is not very high, this method performs 展开更多
关键词 B-spline representation finite element method RBF transfinite interpolation WEB-spline.
原文传递
Multi-neighboring grids schemes for solving PDE eigen-problems 被引量:5
12
作者 SUN JiaChang 《Science China Mathematics》 SCIE 2013年第12期2677-2700,共24页
Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear... Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear element, based on box-splines, are taken as the first stage Khuh -λh/1Mh/1Uh. In this paper, the j-th stage neighboring-grid scheme is defined as Khuh λh/j Mh/j Uh = λh/j Mh/j Uh , where gh :- Mh/j-1 Kh/1 and Mhuh is to be found as a better mass distribution over the j-th stage neighboring-grid G(/k), and Kh/1 can be seen as an expansion of Kh on the j-th neighboring-grid with respect to the (j - 1)-th mass distribution Mh_l. It is shown that for an ODE model eigen-problem, the j-th stage scheme with 2j-th order B-spline basis can reach 2j-th order accuracy and even (2j + 2)-th order accuracy by perturbing the mass matrix. The argument can be extended to high dimensions with separable variable cases. For Laplace eigen-problems with some 2-D and 3-D structured uniform grids, some 2j-th order schemes are presented for j ≤ 3. 展开更多
关键词 PDE eigen-problem discrete Rayleigh quotient multi-neighboring grids schemes B-SPLINES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部