This paper is a short revisit to Kuo-Brown effective interaction derived from the Hamada-Johnston nucleon-nucleon potential, done by Gerry Brown and Tom Kuo. This effective interaction, derived in year 1966, is the fi...This paper is a short revisit to Kuo-Brown effective interaction derived from the Hamada-Johnston nucleon-nucleon potential, done by Gerry Brown and Tom Kuo. This effective interaction, derived in year 1966, is the first attempt to describe nuclear structure properties from the free nucleon-nucleon potential. Nowadays much progress has been achieved for the effective interactions in shell model. We would compare the effective interactions obtained in the 1966 paper with up-to-date shell-model interactions in sd-shell and pf-shell model space. Recent knowledge of effective interactions on nuclear structure, can also be traced in the KuoBrown effective interaction, i.e., the universal roles of central and tensor forces, which reminds us that such discovery should be noticed much earlier.展开更多
The N≈Z nuclei in the mass A^80 region has been researched because of an abundance of nuclear structure phenomena.The projected shell model(PSM)was adopted to investigate the structure of high spin state in proton-ri...The N≈Z nuclei in the mass A^80 region has been researched because of an abundance of nuclear structure phenomena.The projected shell model(PSM)was adopted to investigate the structure of high spin state in proton-rich 74,76,78Kr isotopes including yrast spectra,moment of inertia,electric quadrupole transitions and the behavior of single particle.The calculated results are in good agreement with available data and the shape coexistence in low-spin is also discussed.展开更多
Deformed odd-mass nuclei are ideal examples where the interplay between single-particle and collective degrees of freedom can be studied. Inspired by the recent experimental high-spin data in the odd-proton nuclide 17...Deformed odd-mass nuclei are ideal examples where the interplay between single-particle and collective degrees of freedom can be studied. Inspired by the recent experimental high-spin data in the odd-proton nuclide 171 Tm, we perform projected shell model(PSM) calculations to investigate structure of the ground band and other bands based on isomeric states. In addi- tion to the usual quadrupole-quadrupole force in the Hamiltonian, we employ the hexadecapole-hexadecapole(HH) interac- tion, in a self-consistent way with the hexadecapole deformation of the deformed basis. It is found that the known experi- mental data can be well described by the PSM calculation. The effect of the HH force on the quasiparticle isomeric states is discussed.展开更多
We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)d_r^m where f(r) = r~μ, r~μjJ(qr)...We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)d_r^m where f(r) = r~μ, r~μjJ(qr), V(r)corresponding to the Gaussian and the Yukawa potentials used in nuclear shell models and nuclear structure. In addition,we take into account a general integral formula of the matrix element 〈 n′ l′|f(r) d_r^(m) |n l〉 that covers all seven matrix elements obtained analytically.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11275067 and 11447109)the support from the Helmholtz Association(HGF)through the Nuclear Astrophysics Virtual Institute(VH-VI-417)
文摘This paper is a short revisit to Kuo-Brown effective interaction derived from the Hamada-Johnston nucleon-nucleon potential, done by Gerry Brown and Tom Kuo. This effective interaction, derived in year 1966, is the first attempt to describe nuclear structure properties from the free nucleon-nucleon potential. Nowadays much progress has been achieved for the effective interactions in shell model. We would compare the effective interactions obtained in the 1966 paper with up-to-date shell-model interactions in sd-shell and pf-shell model space. Recent knowledge of effective interactions on nuclear structure, can also be traced in the KuoBrown effective interaction, i.e., the universal roles of central and tensor forces, which reminds us that such discovery should be noticed much earlier.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305059,11275067,11275068 and 11135005)
文摘The N≈Z nuclei in the mass A^80 region has been researched because of an abundance of nuclear structure phenomena.The projected shell model(PSM)was adopted to investigate the structure of high spin state in proton-rich 74,76,78Kr isotopes including yrast spectra,moment of inertia,electric quadrupole transitions and the behavior of single particle.The calculated results are in good agreement with available data and the shape coexistence in low-spin is also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305059,11275067,11135005 and 11275068)the National Basic Research Program of China(Grant No.2013CB834401)the C3S2 Computing Center of School of Science for their calculation support
文摘Deformed odd-mass nuclei are ideal examples where the interplay between single-particle and collective degrees of freedom can be studied. Inspired by the recent experimental high-spin data in the odd-proton nuclide 171 Tm, we perform projected shell model(PSM) calculations to investigate structure of the ground band and other bands based on isomeric states. In addi- tion to the usual quadrupole-quadrupole force in the Hamiltonian, we employ the hexadecapole-hexadecapole(HH) interac- tion, in a self-consistent way with the hexadecapole deformation of the deformed basis. It is found that the known experi- mental data can be well described by the PSM calculation. The effect of the HH force on the quasiparticle isomeric states is discussed.
文摘We present analytical method to calculate single particle matrix elements used in atomic and nuclear physics. We show seven different formulas of matrix elements of the operator f(r)d_r^m where f(r) = r~μ, r~μjJ(qr), V(r)corresponding to the Gaussian and the Yukawa potentials used in nuclear shell models and nuclear structure. In addition,we take into account a general integral formula of the matrix element 〈 n′ l′|f(r) d_r^(m) |n l〉 that covers all seven matrix elements obtained analytically.