A novel method of fabricating core-shell structure, comprising monodisperse polystyrene (PS) spheres as cores and Fe3O4 as shells, is demonstrated. The coating shell of magnetite (Fe3O4) crystallites was formed by con...A novel method of fabricating core-shell structure, comprising monodisperse polystyrene (PS) spheres as cores and Fe3O4 as shells, is demonstrated. The coating shell of magnetite (Fe3O4) crystallites was formed by controlled hydrolysis of aqueous solutions of iron ion with diethyleneglycol (DEG) either by the facile, electrostatic absorption between the polymer and iron compounds. Thickness of the shell could be easily changed in the range from 20 to 60 nm by using slow-injecting coating process. Structure and composition of iron compounds shell were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetric analysis (TG) and vibrating-sample magnetometer (VSM), indicating there are some differences between the Fe3O4-shell of the magnetic composite spheres and pure Fe3O4 particles, e.g. smaller crystallite size, lower magnetic transition temperature and weaker ferromagnetic character.展开更多
The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd na...The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA·h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.展开更多
TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement l...TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement led to a six-fold enhancement in photocatalytic hydrogen evolution. The unique p-n type heterostructure not only promotes the separation and transfer of photogenerated charge carriers significantly, but also offers more active sites for photocatalytic hydrogen production. A photocatalytic mechanism is proposed based on the results of electrochemical measurements and X-ray photoelectron spectroscopy.展开更多
The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a...The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice. Characterization by a variety of techniques, including X-ray powder diffraction, X-ray photoelectron spectroscopy, TransmissiOn electron microscope, Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm. The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed, based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction. Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample, which is lower than the 168 emu/g of the corresponding metal cobalt bulk material. This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core. Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.展开更多
Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nan...Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nanoparticles synthesized via modified St6ber method and cationic poly (diallyldimethylammonium chloride) were alternately adsorbed on the surface of microbeads. Zeta potential, size, and morphology of the microbeads were monitored during LBL assembly process to ensure the successful deposition of silica nanoparticles. The porous shell was characterized using nitrogen adsorption and desorption analyses, and the surface area, volume and diame- ter of the pores were derived. It is found that the porous shell thickness and the pore size can be tuned by changing the coating times of silica nanoparticles. Finally, PS@SiO2 core-shell microbeads with 5 grn PS solid core and 350 nm mesoporous shell (mean BJH pore diameter is ~27 nm) were used to load CdSe/ZnS quantum dots (QDs). The fluorescence microscopic image and the optical amplification of the QDs-embedded microbeads (QDBs) indicate that the as-prepared core-shell microbeads can provide adequate space for QDs and may be useful for further application of nano-micro composites.展开更多
Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W sol...Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W solvent evaporation method. An orthogonal experiment L9(3)3 was applied to get the best preparation conditions. The core-shell paclitaxel-loaded MPEG-PLA/PLA nanoparticles with the highest drug loading efficiency were obtained when amount of MPEG-PLA, time of ultrasonication and volume of deionized water were 300 mg, 10 rain and 30 mL, respectively. The release behavior of paclitaxel from the optimal MPEG-PLA/PLA nanoparticles showed that 22% ofpaclitaxel was released in 14 d. When incubating with human nasopharyngeal carcinoma ceils expressing LMP 1, these optimal nanoparticles showed a little lower tumor growth compared with free paclitaxel.展开更多
文摘A novel method of fabricating core-shell structure, comprising monodisperse polystyrene (PS) spheres as cores and Fe3O4 as shells, is demonstrated. The coating shell of magnetite (Fe3O4) crystallites was formed by controlled hydrolysis of aqueous solutions of iron ion with diethyleneglycol (DEG) either by the facile, electrostatic absorption between the polymer and iron compounds. Thickness of the shell could be easily changed in the range from 20 to 60 nm by using slow-injecting coating process. Structure and composition of iron compounds shell were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetric analysis (TG) and vibrating-sample magnetometer (VSM), indicating there are some differences between the Fe3O4-shell of the magnetic composite spheres and pure Fe3O4 particles, e.g. smaller crystallite size, lower magnetic transition temperature and weaker ferromagnetic character.
基金Project(20973124)supported by the National Natural Science Foundation of ChinaProject(KLAEMC-OP201101)supported by the Open Project of Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education(Nankai University),China
文摘The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA·h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.
基金supported by the National Natural Science Foundation of China(21773031)the Natural Science Foundation of Fujian Province(2018J01686)the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-2017A01 and SKLPEE-2017B02)~~
文摘TiO2@Ni(OH)2 core-shell microspheres were synthesized by a facile strategy to obtain a perfect 3D flower-like nanostructure with well-arranged Ni(OH)2 nanoflakes on the surfaces of TiO2 microspheres;this arrangement led to a six-fold enhancement in photocatalytic hydrogen evolution. The unique p-n type heterostructure not only promotes the separation and transfer of photogenerated charge carriers significantly, but also offers more active sites for photocatalytic hydrogen production. A photocatalytic mechanism is proposed based on the results of electrochemical measurements and X-ray photoelectron spectroscopy.
基金ACKNOWLEDGMENT This work was supported Science Foundation of China by the National Natural (No.20273066).
文摘The synthesis of cobalt-carbon core-shell microspheres in supercritical carbon dioxide system was investi- gated. Cobalt-carbon core-shell microspheres with diameter of about 1μm were prepared at 350 ℃ for 12 h in a closed vessel containing an appropriate amount of bis(cyclopentadienyl)cobalt powder and dry ice. Characterization by a variety of techniques, including X-ray powder diffraction, X-ray photoelectron spectroscopy, TransmissiOn electron microscope, Fourier transform infrared spectrum and Raman spectroscopy analysis reveals that each cobalt-carbon core-shell microsphere is made up of an amorphous cobalt core with diameter less than 1 μm and an amorphous carbon shell with thickness of about 200 nm. The possible growth mechanism of cobalt-carbon core-shell microspheres is discussed, based on the pyrolysis of bis(cyclopentadienyl)cobalt in supercritical carbon dioxide and the deposition of carbon or carbon clusters with odd electrons on the surface of magnetic cobalt cores due to magnetic attraction. Magnetic measurements show 141.41 emu/g of saturation magnetization of a typical sample, which is lower than the 168 emu/g of the corresponding metal cobalt bulk material. This is attributed to the considerable mass of the carbon shell and amorphous nature of the magnetic core. Control of magnetism in the cobalt-carbon core-shell microspheres was achieved by annealing treatments.
基金Supported by the National Natural Science Foundation of China(No.51202160)
文摘Polystyrene (PS) @SiO2 core-shell microbeads with large pore and large particle size were prepared via layer-by-layer(LBL)assembly technique for potential applications in nano-micro composites. Negative silica nanoparticles synthesized via modified St6ber method and cationic poly (diallyldimethylammonium chloride) were alternately adsorbed on the surface of microbeads. Zeta potential, size, and morphology of the microbeads were monitored during LBL assembly process to ensure the successful deposition of silica nanoparticles. The porous shell was characterized using nitrogen adsorption and desorption analyses, and the surface area, volume and diame- ter of the pores were derived. It is found that the porous shell thickness and the pore size can be tuned by changing the coating times of silica nanoparticles. Finally, PS@SiO2 core-shell microbeads with 5 grn PS solid core and 350 nm mesoporous shell (mean BJH pore diameter is ~27 nm) were used to load CdSe/ZnS quantum dots (QDs). The fluorescence microscopic image and the optical amplification of the QDs-embedded microbeads (QDBs) indicate that the as-prepared core-shell microbeads can provide adequate space for QDs and may be useful for further application of nano-micro composites.
基金Key Research Foundation of Wannan Medical College(Grant No.WK2014Z06)Doctoral Starting-up Foundation of Wannan Medical College(Grant No.201219)
文摘Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W solvent evaporation method. An orthogonal experiment L9(3)3 was applied to get the best preparation conditions. The core-shell paclitaxel-loaded MPEG-PLA/PLA nanoparticles with the highest drug loading efficiency were obtained when amount of MPEG-PLA, time of ultrasonication and volume of deionized water were 300 mg, 10 rain and 30 mL, respectively. The release behavior of paclitaxel from the optimal MPEG-PLA/PLA nanoparticles showed that 22% ofpaclitaxel was released in 14 d. When incubating with human nasopharyngeal carcinoma ceils expressing LMP 1, these optimal nanoparticles showed a little lower tumor growth compared with free paclitaxel.