Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition o...Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework(MIL-101)was accomplished by wet impregnation in n-hexane.The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions.At 30 °C and 0.1 MPa of H2 pressure,the Ni@Pd/MIL-101 gives a TOF as high as 375 h–1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes.The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure,together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.展开更多
To solve the excessive emission of CO_(2) caused by the excessive use of fossil fuels and the corre‐sponding environmental problems,such as the greenhouse effect and climate warming,electrocat‐alytic CO_(2) reductio...To solve the excessive emission of CO_(2) caused by the excessive use of fossil fuels and the corre‐sponding environmental problems,such as the greenhouse effect and climate warming,electrocat‐alytic CO_(2) reduction to liquid fuel with high selectivity is of huge significance for energy conversion and storge.Indium has been considered as a promising and attractive metal for the reduction of CO_(2) to formate.However,the current issues,such as low selectivity and current activity,largely limit the industrial application for electrocatalytic CO_(2) reduction,the design optimization of the catalyst structure and composition is extremely important.Herein,we develop a facile strategy to regulate surface In–O of In@InO_(x) core‐shell nanoparticles and explore the structure‐performance relation‐ship for efficient CO_(2)‐to‐formate conversion though air calcination and subsequent in situ electro‐chemical reconstruction,discovering that the surface In–O is beneficial to stabilize the CO_(2) interme‐diate and generate formate.The optimized AC‐In@InO_(x)‐CNT catalyst exhibits a C1 selectivity up to 98%and a formate selectivity of 94%as well as a high partial formate current density of 32.6 mA cm^(-2).Furthermore,the catalyst presents an excellent stability for over 25 h with a limited activity decay,outperforming the previously reported In‐based catalysts.These insights may open up op‐portunities for exploiting new efficient catalysts by manipulating their surface.展开更多
The deposition onto an ordered mesoporous carbon(OMC)support of well dispersed PtM(M = Ru,Fe,Mo)alloy nanoparticles(NPs)were synthesized by a direct replication method using SBA-15 as the hard template,furfuryl ...The deposition onto an ordered mesoporous carbon(OMC)support of well dispersed PtM(M = Ru,Fe,Mo)alloy nanoparticles(NPs)were synthesized by a direct replication method using SBA-15 as the hard template,furfuryl alcohol and trimethylbeneze as the primary carbon sources,and metal acetylacetonate as the alloying metal precursor and secondary carbon source.The physicochemical properties of the PtM-OMC catalysts were characterized by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray absorption near edge structure,and extended X-ray absorption fine structure.The alloy PtM NPs have an average size of 2-3 nm and were well dispersed in the pore channels of the OMC support.The second metal(M)in the PtM NPs was mostly in the reduced state,and formed a typical core(Pt)-shell(M)structure.Cyclic voltammetry measurements showed that these PtM-OMC electrodes had excellent electrocatalytic activities and tolerance to CO poisoning during the methanol oxidation reaction,which surpassed those of typical activated carbon-supported PtRu catalysts.In particular,the PtFe-OMC catalyst,which exhibited the best performance,can be a practical anodic electrocatalyst in direct methanol fuel cells due to its superior stability,excellent CO tolerance,and low production cost.展开更多
We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) ...We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields CoCeO2(111) solid solution at low Co coverage(0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O2 above 550 K. Notably, during oxidation and reduction cycles with O2 and H2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell.展开更多
An analytic phenomenological shell model mass formula for light nuclei is constructed. The formula takes into account the non locality of the self consistent single particle potential and the special features of light...An analytic phenomenological shell model mass formula for light nuclei is constructed. The formula takes into account the non locality of the self consistent single particle potential and the special features of light nuclei, namely: (a) charge and mass distributions are closer to a Gaussian shape than to the shape characteristic in medium and heavy nuclei; (b) the central charge and mass densities are larger than, and decrease towards, the "asymptotic" values that are the reference parameters for nuclear matter; and (c) after a shell closure, the next level has a larger orbital angular momentum and a noticeably larger mean square radius. Only then a good numerical fit is obtained with parameters consistent with optical model analysis and empirical spin-orbit couplings. A correlation between the "skin effect" and the symmetry dependence of the optical potential is established. Towards the neutron drip line the potential well depth, the spin-orbit splitting of the single particle levels and the gap between major shells decrease, as has been observed. The ensuing shift and contraction of the single particle level scheme may lead to: (a) to strong configuration mixing and new magic numbers, and (b) the onset of the halo effect, to avoid the expulsion of single particle levels to the continuum.展开更多
In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and...In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.展开更多
Magnetically recyclable Au/Co/Fe core-shell nanoparticles (NPs) have been successfully synthesized via a one-step in situ procedure. Transmission electron microscope (TEM), energy dispersive X-ray spectroscopic (...Magnetically recyclable Au/Co/Fe core-shell nanoparticles (NPs) have been successfully synthesized via a one-step in situ procedure. Transmission electron microscope (TEM), energy dispersive X-ray spectroscopic (EDS), and electron energy-loss spectroscopic (EELS) measurements revealed that the trimetallic Au/Co/Fe NPs have a triple-layered core-shell structure composed of a Au core, a Co-rich inter-layer, and a Fe-rich shell. The Au/Co/Fe core-shell NPs exhibit much higher catalytic activities for hydrolytic dehydrogenation of ammonia borane (NHBBH3, AB) than the monometallic (Au, Co, Fe) or bimetallic (AuCo, AuFe, CoFe) counterparts.展开更多
Porous silicon nanoparficles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and cha...Porous silicon nanoparficles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and characterization of thermally hydrocarbonized pSiNPs (THCpSiNPs) and chitosan-coated THCpSiNPs for therapeutic oligonucleotide delivery. Chitosan coating after oligonucleotide loading significantly improves sustained oligonucleotide release and suppresses burst release effects. Moreover, cellular uptake, endocytosis, and cytotoxicity of oligonucleotide-loaded THCpSiNPs have been evaluated in vitro. Standard cell viability assays demonstrate that cells incubated with the NPs at a concentration of 0.1 mg/mL are 95% viable. In addition, chitosan coating significantly enhances the uptake of oligonucleotide-loaded THCpSiNPs across the cell membrane. Moreover, histopathological analysis of liver, kidney, spleen, and skin tissue collected from mice receiving NPs further demonstrates the biocompatible and non-inflammatory properties of the NPs as a gene delivery vehicle for intravenous and subcutaneous administration in vivo. Taken together, these results suggest that THCpSiNPs provide a versatile platform that could be used as efficient vehicles for the intracellular delivery of oligonucleotides for gene therapy.展开更多
CNTs with core-shell structure were successfully synthesized by a microwave-assisted polyol method,and magnetic Ni nanoparticles were employed as a catalyst. The preparation method is fast and simple. The structures,m...CNTs with core-shell structure were successfully synthesized by a microwave-assisted polyol method,and magnetic Ni nanoparticles were employed as a catalyst. The preparation method is fast and simple. The structures,morphology and magnetic properties of the as-synthesized samples were investigated using Raman spectrometer,X-ray diffraction (XRD),transmission electron microscopy (TEM),vibrating sample magnetometer (VSM),respectively. The XRD results suggested that Ni particles used as a catalyst in our experiment were nano-sized. In this paper,magnetic Ni nanoparticles were employed as a catalyst,and an electric spark on metal Ni nanoparticles with the microwave eddy current effect could induce CNTs’ formation with the further reaction. The length of hollow carbon nanotubes was micro-sized and the diameters of most of the CNTs were varying from 18 to 20 nm according to the TEM images. Magnetic measurements demonstrated that CNTs with core-shell structure indicated a characteristic ferromagnetic behavior compared with Ni nanoparticles.展开更多
Ag@Cu2O core-shell metal-semiconductor nanoparticles(NPs) were prepared by using solution phase strategy. It was found that Ag@Cu2O core-shell NPs were easily converted to Ag@Cu bimetallic core-shell NPs with the help...Ag@Cu2O core-shell metal-semiconductor nanoparticles(NPs) were prepared by using solution phase strategy. It was found that Ag@Cu2O core-shell NPs were easily converted to Ag@Cu bimetallic core-shell NPs with the help of surfactant PVP and excessive reducer ascorbic acid in air at room temperature, which is a unique phenomenon. Varying volumes of Ag colloidal solutions were added into the reaction mixtures containing fixed initial concentrations of Cu2+ and PVP, Ag@Cu2O and Ag@Cu core-shell NPs with fixed core size but varying outer shell thicknesses could be obtained. The composites, structures, morphologies and extinction properties of Ag@Cu2O and Ag@Cu core-shell NPs were systematically characterized by XRD, TEM and extinction spectra. Both of these NPs show wide tunable optical properties. The extinction peaks could be shifted from 421 nm to 700 nm. FTIR results reveal that Cu+ ions on the surface of Cu2 O nanocrystalline coordinate with N and O atoms in PVP and further are reduced to metallic Cu by excessive ascorbic acid and then form a nucleation site on the surface of Cu2 O nanocrystalline. PVP binds onto a different site to proceed with the reduction until all the Cu sources in Cu2 O NPs are completely assumed. And the shell of Cu2 O is converted to Cu shell. The synthesis approach in this paper is simple and also a promising reference for synthesizing other core-shell NPs. Ag@Cu2O NPs can be easily converted to Ag@Cu NPs in air at room temperature, which is promising to be used in electronic devices.展开更多
The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the ...The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hw are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.展开更多
基金supported by the National Natural Science Foundation of China(21322606 and 21436005)the Specialized Research Fund for the Doctoral Program of Higher Education(20120172110012)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Natural Science Foundation of Guangdong Province(S2011020002397 and 2013B090500027)~~
文摘Ni@Pd core-shell nanoparticles with a mean particle size of 8–9 nm were prepared by solvothermal reduction of bivalent nickel and palladium in oleylamine and trioctylphosphine.Subsequently,the first-ever deposition of Ni@Pd core-shell nanoparticles having different compositions on a metal-organic framework(MIL-101)was accomplished by wet impregnation in n-hexane.The Ni@Pd/MIL-101 materials were characterized by powder X-ray diffraction,Fourier transform infrared spectroscopy,transmission electron microscopy,and energy-dispersive X-ray spectroscopy and also investigated as catalysts for the hydrogenation of nitrobenzene under mild reaction conditions.At 30 °C and 0.1 MPa of H2 pressure,the Ni@Pd/MIL-101 gives a TOF as high as 375 h–1 for the hydrogenation of nitrobenzene and is applicable to a wide range of substituted nitroarenes.The exceptional performance of this catalyst is believed to result from the significant Ni-Pd interaction in the core-shell structure,together with promotion of the conversions of aromatics by uncoordinated Lewis acidic Cr sites on the MIL-101 support.
文摘To solve the excessive emission of CO_(2) caused by the excessive use of fossil fuels and the corre‐sponding environmental problems,such as the greenhouse effect and climate warming,electrocat‐alytic CO_(2) reduction to liquid fuel with high selectivity is of huge significance for energy conversion and storge.Indium has been considered as a promising and attractive metal for the reduction of CO_(2) to formate.However,the current issues,such as low selectivity and current activity,largely limit the industrial application for electrocatalytic CO_(2) reduction,the design optimization of the catalyst structure and composition is extremely important.Herein,we develop a facile strategy to regulate surface In–O of In@InO_(x) core‐shell nanoparticles and explore the structure‐performance relation‐ship for efficient CO_(2)‐to‐formate conversion though air calcination and subsequent in situ electro‐chemical reconstruction,discovering that the surface In–O is beneficial to stabilize the CO_(2) interme‐diate and generate formate.The optimized AC‐In@InO_(x)‐CNT catalyst exhibits a C1 selectivity up to 98%and a formate selectivity of 94%as well as a high partial formate current density of 32.6 mA cm^(-2).Furthermore,the catalyst presents an excellent stability for over 25 h with a limited activity decay,outperforming the previously reported In‐based catalysts.These insights may open up op‐portunities for exploiting new efficient catalysts by manipulating their surface.
基金supported by the Ministry of Science and Technology(NSC98-2113-M001-017-MY3,NSC101-2113-M001-020-MY3),Taiwan,China~~
文摘The deposition onto an ordered mesoporous carbon(OMC)support of well dispersed PtM(M = Ru,Fe,Mo)alloy nanoparticles(NPs)were synthesized by a direct replication method using SBA-15 as the hard template,furfuryl alcohol and trimethylbeneze as the primary carbon sources,and metal acetylacetonate as the alloying metal precursor and secondary carbon source.The physicochemical properties of the PtM-OMC catalysts were characterized by N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,X-ray absorption near edge structure,and extended X-ray absorption fine structure.The alloy PtM NPs have an average size of 2-3 nm and were well dispersed in the pore channels of the OMC support.The second metal(M)in the PtM NPs was mostly in the reduced state,and formed a typical core(Pt)-shell(M)structure.Cyclic voltammetry measurements showed that these PtM-OMC electrodes had excellent electrocatalytic activities and tolerance to CO poisoning during the methanol oxidation reaction,which surpassed those of typical activated carbon-supported PtRu catalysts.In particular,the PtFe-OMC catalyst,which exhibited the best performance,can be a practical anodic electrocatalyst in direct methanol fuel cells due to its superior stability,excellent CO tolerance,and low production cost.
基金funded by the European Community(FP7-NMP.2012.1.1-1 project chip CAT,Reference No.310191)by the Deutsche Forschungsgemeinschaft(DFG)within the Excellence Cluster“Engineering of Advanced Materials”in the framework of the excellence initiative+2 种基金support by the DFG is acknowledged through the Priority Program SPP 1708 and the Research Unit FOR 1878supported by structural funds under project CZ.02.1.01/0.0/0.0/16_025/0007414by the Czech Ministry of Education(grant LM2015057)。
文摘We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields CoCeO2(111) solid solution at low Co coverage(0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O2 above 550 K. Notably, during oxidation and reduction cycles with O2 and H2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell.
文摘An analytic phenomenological shell model mass formula for light nuclei is constructed. The formula takes into account the non locality of the self consistent single particle potential and the special features of light nuclei, namely: (a) charge and mass distributions are closer to a Gaussian shape than to the shape characteristic in medium and heavy nuclei; (b) the central charge and mass densities are larger than, and decrease towards, the "asymptotic" values that are the reference parameters for nuclear matter; and (c) after a shell closure, the next level has a larger orbital angular momentum and a noticeably larger mean square radius. Only then a good numerical fit is obtained with parameters consistent with optical model analysis and empirical spin-orbit couplings. A correlation between the "skin effect" and the symmetry dependence of the optical potential is established. Towards the neutron drip line the potential well depth, the spin-orbit splitting of the single particle levels and the gap between major shells decrease, as has been observed. The ensuing shift and contraction of the single particle level scheme may lead to: (a) to strong configuration mixing and new magic numbers, and (b) the onset of the halo effect, to avoid the expulsion of single particle levels to the continuum.
基金Supported by the Natural Science Foundation of Heilongjiang Province(B201010)the Education Department of Heilongjiang Province(12511595)
文摘In this study, magnetic core–shell structure Fe3O4@MCM-41 nanoparticles were synthesized with vesicles as soft templates. In the preparation, Fe Cl2 and tetraethy orthosilicate(TEOS) were selected as Fe processor and Si precursor, respectively. Stable vesicles first formed in 0.03 mol·L-11:2 mixture of anionic surfactant sodium dodecyl sulfate and cationic surfactant cetyltrimethyl ammonium bromide. Then, TEOS was added in the vesicle aqueous solution, leading to a highly dispersed solution. After high-temperature calcination, Fe3O4@MCM-41 nanoparticles were obtained. Their structure and morphology were characterized by Saturn Digisizer, transmission electron microscope and vibrating sample magneto-meter. The results indicate that the vesicles are spherical and their size could be tuned between 20 and 50 nm. The average grain diameter of synthesize magnetic core–shell Fe3O4@MCM-41 particles is 100–150 nm and most of them are in elliptical shape. The dispersion of magnetic particles is very good and magnetization values are up to 33.44 emu·g-1, which are superior to that of other Fe3O4 materials reported.
文摘Magnetically recyclable Au/Co/Fe core-shell nanoparticles (NPs) have been successfully synthesized via a one-step in situ procedure. Transmission electron microscope (TEM), energy dispersive X-ray spectroscopic (EDS), and electron energy-loss spectroscopic (EELS) measurements revealed that the trimetallic Au/Co/Fe NPs have a triple-layered core-shell structure composed of a Au core, a Co-rich inter-layer, and a Fe-rich shell. The Au/Co/Fe core-shell NPs exhibit much higher catalytic activities for hydrolytic dehydrogenation of ammonia borane (NHBBH3, AB) than the monometallic (Au, Co, Fe) or bimetallic (AuCo, AuFe, CoFe) counterparts.
文摘Porous silicon nanoparficles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and characterization of thermally hydrocarbonized pSiNPs (THCpSiNPs) and chitosan-coated THCpSiNPs for therapeutic oligonucleotide delivery. Chitosan coating after oligonucleotide loading significantly improves sustained oligonucleotide release and suppresses burst release effects. Moreover, cellular uptake, endocytosis, and cytotoxicity of oligonucleotide-loaded THCpSiNPs have been evaluated in vitro. Standard cell viability assays demonstrate that cells incubated with the NPs at a concentration of 0.1 mg/mL are 95% viable. In addition, chitosan coating significantly enhances the uptake of oligonucleotide-loaded THCpSiNPs across the cell membrane. Moreover, histopathological analysis of liver, kidney, spleen, and skin tissue collected from mice receiving NPs further demonstrates the biocompatible and non-inflammatory properties of the NPs as a gene delivery vehicle for intravenous and subcutaneous administration in vivo. Taken together, these results suggest that THCpSiNPs provide a versatile platform that could be used as efficient vehicles for the intracellular delivery of oligonucleotides for gene therapy.
基金supported by the National Natural Science Foundation of China (Grant Nos.50672001,51072002)the "211" Project of Anhui University
文摘CNTs with core-shell structure were successfully synthesized by a microwave-assisted polyol method,and magnetic Ni nanoparticles were employed as a catalyst. The preparation method is fast and simple. The structures,morphology and magnetic properties of the as-synthesized samples were investigated using Raman spectrometer,X-ray diffraction (XRD),transmission electron microscopy (TEM),vibrating sample magnetometer (VSM),respectively. The XRD results suggested that Ni particles used as a catalyst in our experiment were nano-sized. In this paper,magnetic Ni nanoparticles were employed as a catalyst,and an electric spark on metal Ni nanoparticles with the microwave eddy current effect could induce CNTs’ formation with the further reaction. The length of hollow carbon nanotubes was micro-sized and the diameters of most of the CNTs were varying from 18 to 20 nm according to the TEM images. Magnetic measurements demonstrated that CNTs with core-shell structure indicated a characteristic ferromagnetic behavior compared with Ni nanoparticles.
基金supported by the National Natural Science Foundation of China(Grant Nos.41172110 and 61107090)Shandong Provincial Natural Science Foundation(Grant No.ZR2011BZ007)
文摘Ag@Cu2O core-shell metal-semiconductor nanoparticles(NPs) were prepared by using solution phase strategy. It was found that Ag@Cu2O core-shell NPs were easily converted to Ag@Cu bimetallic core-shell NPs with the help of surfactant PVP and excessive reducer ascorbic acid in air at room temperature, which is a unique phenomenon. Varying volumes of Ag colloidal solutions were added into the reaction mixtures containing fixed initial concentrations of Cu2+ and PVP, Ag@Cu2O and Ag@Cu core-shell NPs with fixed core size but varying outer shell thicknesses could be obtained. The composites, structures, morphologies and extinction properties of Ag@Cu2O and Ag@Cu core-shell NPs were systematically characterized by XRD, TEM and extinction spectra. Both of these NPs show wide tunable optical properties. The extinction peaks could be shifted from 421 nm to 700 nm. FTIR results reveal that Cu+ ions on the surface of Cu2 O nanocrystalline coordinate with N and O atoms in PVP and further are reduced to metallic Cu by excessive ascorbic acid and then form a nucleation site on the surface of Cu2 O nanocrystalline. PVP binds onto a different site to proceed with the reduction until all the Cu sources in Cu2 O NPs are completely assumed. And the shell of Cu2 O is converted to Cu shell. The synthesis approach in this paper is simple and also a promising reference for synthesizing other core-shell NPs. Ag@Cu2O NPs can be easily converted to Ag@Cu NPs in air at room temperature, which is promising to be used in electronic devices.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2015QN21)the National Natural Science Foundation of China(Grant Nos.11275098,11275248,and 11505058)
文摘The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hw are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.