期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GSVD的核不相关辨别子空间与雷达目标识别 被引量:1
1
作者 刘华林 杨万麟 《电子与信息学报》 EI CSCD 北大核心 2009年第5期1095-1098,共4页
该文提出了一种基于广义奇异值分解的核不相关辨别子空间算法,并将其用于高分辨距离像雷达目标识别。新算法结合广义奇异值分解与核方法的优点,有效地解决了传统方法面临的矩阵奇异问题,同时进一步改善了目标的类可分性。其次,依据Fishe... 该文提出了一种基于广义奇异值分解的核不相关辨别子空间算法,并将其用于高分辨距离像雷达目标识别。新算法结合广义奇异值分解与核方法的优点,有效地解决了传统方法面临的矩阵奇异问题,同时进一步改善了目标的类可分性。其次,依据Fisher准则导出了距离像总散度矩阵零空间中不含有有用辨别信息的结论。利用这一结论,可以在求解核不相关最优辨别矢量之前对各散度矩阵进行预降维,以减小后续运算的计算复杂度。对3类飞机目标实测数据的识别结果表明了所提方法的有效性。 展开更多
关键词 雷达目标识别 高分辨距离像 核不相关辨别子空间 广义奇异值分解
下载PDF
核不相关辨别子空间雷达目标一维像识别 被引量:2
2
作者 刘华林 王宗全 《雷达科学与技术》 2009年第4期262-266,共5页
针对不相关辨别分析方法在目标类别数较多时计算量大,且可能面临散度矩阵奇异的问题,提出了一种核不相关辨别子空间算法,并将其用于雷达目标一维距离像识别。新算法继承了原方法提取目标统计不相关辨别特征的优点,同时利用核机器学习理... 针对不相关辨别分析方法在目标类别数较多时计算量大,且可能面临散度矩阵奇异的问题,提出了一种核不相关辨别子空间算法,并将其用于雷达目标一维距离像识别。新算法继承了原方法提取目标统计不相关辨别特征的优点,同时利用核机器学习理论与广义奇异值分解,有效解决了计算量与矩阵奇异的问题,并进一步改善了目标的类可分性。对ISAR实测飞机数据进行了分类,并与几种经典核非线性方法进行了比较,结果表明所提方法的识别性能得到了明显改善。 展开更多
关键词 雷达目标识别 核不相关辨别子空间 广义奇异值分解 一维距离像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部