Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is stron...Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.展开更多
The purpose of this paper is to study the mapping properties of the singular Radon transforms with rough kernels. Such singular integral operators are proved to be bounded on Lebesgue spaces.
The sparse nonlinear programming (SNP) is to minimize a general continuously differentiable func- tion subject to sparsity, nonlinear equality and inequality constraints. We first define two restricted constraint qu...The sparse nonlinear programming (SNP) is to minimize a general continuously differentiable func- tion subject to sparsity, nonlinear equality and inequality constraints. We first define two restricted constraint qualifications and show how these constraint qualifications can be applied to obtain the decomposition properties of the Frechet, Mordukhovich and Clarke normal cones to the sparsity constrained feasible set. Based on the decomposition properties of the normal cones, we then present and analyze three classes of Karush-Kuhn- Tucker (KKT) conditions for the SNP. At last, we establish the second-order necessary optimality condition and sufficient optimality condition for the SNP.展开更多
基金jointly supported by the NSF(Nos.41104069 and 41274124)the National 973 Project(No.2014CB239006)+1 种基金National Oil and Gas Project(Nos.2016ZX05014001and 2016ZX05002)the Tai Shan Science Foundation for The Excellent Youth Scholars
文摘Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.
基金the National Natural Science Fundation of China(Nos.10371087,10671041).
文摘The purpose of this paper is to study the mapping properties of the singular Radon transforms with rough kernels. Such singular integral operators are proved to be bounded on Lebesgue spaces.
基金supported by National Natural Science Foundation of China(Grant No.11431002)Shandong Province Natural Science Foundation(Grant No.ZR2016AM07)
文摘The sparse nonlinear programming (SNP) is to minimize a general continuously differentiable func- tion subject to sparsity, nonlinear equality and inequality constraints. We first define two restricted constraint qualifications and show how these constraint qualifications can be applied to obtain the decomposition properties of the Frechet, Mordukhovich and Clarke normal cones to the sparsity constrained feasible set. Based on the decomposition properties of the normal cones, we then present and analyze three classes of Karush-Kuhn- Tucker (KKT) conditions for the SNP. At last, we establish the second-order necessary optimality condition and sufficient optimality condition for the SNP.