期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
融合小波变换和改进KFD的人脸识别方法 被引量:3
1
作者 朱冰莲 杨吉祥 +1 位作者 许娜 张磊 《光电工程》 CAS CSCD 北大核心 2012年第3期94-99,共6页
基于核函数的Fisher判别分析(KFD)在人脸识别中通常采用高斯径向基函数做核函数,但核函数中参数的选取对分类效果影响较大。目前参数的选取一般仅凭经验,且该方法在处理大样本时,速度较慢。针对这个问题,本文提出了一种融合小波变换和改... 基于核函数的Fisher判别分析(KFD)在人脸识别中通常采用高斯径向基函数做核函数,但核函数中参数的选取对分类效果影响较大。目前参数的选取一般仅凭经验,且该方法在处理大样本时,速度较慢。针对这个问题,本文提出了一种融合小波变换和改进KFD的人脸识别的方法。该方法首先用小波变换降低样本的维数;然后在用KFD进行特征提取时,采用微粒群算法自动获取一个最优参数,增强分类效果;最后用SVM分类器完成特征的识别。实验表明,该方法与传统的KFD相比较,运算时间减少,而且识别率得到提高。 展开更多
关键词 函数:人脸识别 小波变换 微粒群算法 SVM分类器
下载PDF
尾流激励的叶片气动力降阶模型 被引量:3
2
作者 李立州 杨明磊 +2 位作者 张珺 罗骁 原梅妮 《计算力学学报》 EI CAS CSCD 北大核心 2018年第3期299-303,共5页
气动力降阶模型是研究叶片气动弹性振动快速高效的新方法。现有气动力降阶模型的研究主要集中在叶片颤振方面,没有涉及更为常见的上游尾流激励的叶片振动问题。本文提出基于Volterra级数的尾流激励叶片气动力降阶模型,为尾流激励下叶片... 气动力降阶模型是研究叶片气动弹性振动快速高效的新方法。现有气动力降阶模型的研究主要集中在叶片颤振方面,没有涉及更为常见的上游尾流激励的叶片振动问题。本文提出基于Volterra级数的尾流激励叶片气动力降阶模型,为尾流激励下叶片振动和动静叶干涉振动研究提供了新的思路。采用行波法简化尾流的参数个数,用阶跃信号法识别降阶模型的核函数。二维叶片的算例结果表明,本文方法可以较准确地描述尾流激励引起的叶片气动力振荡,而且计算效率极高。 展开更多
关键词 气动力降阶模型 尾流 VOLTERRA级数 核函数识别 叶片 阶跃识别
下载PDF
流速对尾流激励的叶片气动力降阶模型的影响 被引量:1
3
作者 李立州 张新燕 +3 位作者 张曙娟 杨明磊 罗骁 原梅妮 《科学技术与工程》 北大核心 2018年第18期118-125,共8页
介绍了基于Volterra级数的尾流激励叶片气动力降阶模型,用于上游尾流激励下叶片气动载荷的快速计算。用一个叶片的算例验证了该降阶模型,通过不同流速的算例对比发现:该降阶模型可以快速准确地描述尾流激励引起的叶片气动力,流速或流场... 介绍了基于Volterra级数的尾流激励叶片气动力降阶模型,用于上游尾流激励下叶片气动载荷的快速计算。用一个叶片的算例验证了该降阶模型,通过不同流速的算例对比发现:该降阶模型可以快速准确地描述尾流激励引起的叶片气动力,流速或流场结构不是影响该气动力降阶模型精度的关键,而上游尾流扰动是否满足小扰动假设是保证该气动力降阶模型精确的关键。 展开更多
关键词 气动力降阶模型 尾流 VOLTERRA级数 核函数识别 流速
下载PDF
Support vector machines for emotion recognition in Chinese speech 被引量:8
4
作者 王治平 赵力 邹采荣 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期307-310,共4页
Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional fe... Support vector machines (SVMs) are utilized for emotion recognition in Chinese speech in this paper. Both binary class discrimination and the multi class discrimination are discussed. It proves that the emotional features construct a nonlinear problem in the input space, and SVMs based on nonlinear mapping can solve it more effectively than other linear methods. Multi class classification based on SVMs with a soft decision function is constructed to classify the four emotion situations. Compared with principal component analysis (PCA) method and modified PCA method, SVMs perform the best result in multi class discrimination by using nonlinear kernel mapping. 展开更多
关键词 speech signal emotion recognition support vector machines
下载PDF
Research on Chinese place name recognition based on kernel classifier
5
作者 宇缨 王晓龙 +1 位作者 刘秉权 王慧 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期79-82,共4页
A SVMs (Support Vector Machines) based method to identify Chinese place names is presented. In our approach, place name candidate is located according to a rational forming assumption, then SVMs based identification s... A SVMs (Support Vector Machines) based method to identify Chinese place names is presented. In our approach, place name candidate is located according to a rational forming assumption, then SVMs based identification strategy is used to distinguish whether one candidate is true place name or not. Referring to linguistic knowledge, basic semanteme of a contextual word and frequency information of words inside place name candidate are selected as features in our methodology. So dimension in the feature space is reduced dramatically and processing procedure is performed more efficiently. Result of open testing on unregistered place names achieves F-measure 83.25 in 8.17 million words news based on this project. 展开更多
关键词 SVMS Chinese place name feature selection semanteme kernel function
下载PDF
Frequency-hopping transmitter fingerprint feature recognition with kernel projection and joint representation
6
作者 Ping SUI Ying GUO +1 位作者 Kun-feng ZHANG Hong-guang LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1133-1147,共15页
Frequency-hopping(FH)is one of the commonly used spread spectrum techniques that finds wide applications in communications and radar systems because of its inherent capability of low interception,good confidentiality,... Frequency-hopping(FH)is one of the commonly used spread spectrum techniques that finds wide applications in communications and radar systems because of its inherent capability of low interception,good confidentiality,and strong antiinterference.However,non-cooperation FH transmitter classification is a significant and challenging issue for FH transmitter fingerprint feature recognition,since it not only is sensitive to noise but also has non-linear,non-Gaussian,and non-stability characteristics,which make it difficult to guarantee the classification in the original signal space.Some existing classifiers,such as the sparse representation classifier(SRC),generally use an individual representation rather than all the samples to classify the test data,which over-emphasizes sparsity but ignores the collaborative relationship among the given set of samples.To address these problems,we propose a novel classifier,called the kernel joint representation classifier(KJRC),for FH transmitter fingerprint feature recognition,by integrating kernel projection,collaborative feature representation,and classifier learning into a joint framework.Extensive experiments on real-world FH signals demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art recognition methods. 展开更多
关键词 Frequency-hopping Fingerprint feature Kernel function Joint representation Transmitter recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部